Previous |  Up |  Next


coupled neurons; Hindmarsh–Rose neurons; synchronization; feedback control
This paper is concerned with synchronization of two coupled Hind-marsh-Rose (HR) neurons. Two synchronization criteria are derived by using nonlinear feedback control and linear feedback control, respectively. A synchronization criterion for FitzHugh-Nagumo (FHN) neurons is derived as the application of control method of this paper. Compared with some existing synchronization results for chaotic systems, the contribution of this paper is that feedback gains are only dependent on system parameters, rather than dependent on the norm bounds of state variables of uncontrolled and controlled HR neurons. The effectiveness of our results are demonstrated by two simulation examples.
[1] Barrio, R., Martinez, M. A., Serrano, S., Shilnikov, A.: Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons. Chaos 24 (2014), 023128. DOI 10.1063/1.4882171 | MR 3403326
[2] Chalike, S. K., Lee, K. W., Singh, S. N.: Synchronization of inferior olive neurons via $L_1$ adaptive feedback. Nonlinear Dynam. 78 (2014), 467-483. DOI 10.1007/s11071-014-1454-6 | MR 3266456
[3] Checco, P., Righero, M., Biey, M., Kocarev, L.: Synchronization in networks of Hindmarsh-Rose neurons. IEEE Trans. Circuits Syst. II: Exp. Briefs 55 (2008), 1274-1278. DOI 10.1109/tcsii.2008.2008057
[4] Ferrari, F. A. S., Viana, R. L., Lopesa, S. R., Stoop, R.: Phase synchronization of coupled bursting neurons and the generalized Kuramoto model. Neural Netw. 66 (2015), 107-118. DOI 10.1016/j.neunet.2015.03.003
[5] Hindmarsh, J. L., Rose, R. M.: A mode of the nerve impulse using two first-order differential equations. Nature 296 (1982), 162-164. DOI 10.1038/296162a0
[6] Holden, A. V., Fan, Y. S.: From simple to simple bursting oscillatory behaviour via chaos in the Rose-Hindmarsh model for neuronal activity. Chaos Soliton Fract. 2 (1992), 221-236. DOI 10.1016/0960-0779(92)90032-i | Zbl 0766.92006
[7] Hosaka, R., Sakai, Y., Aihara, K.: Strange responses to fluctuating inputs in the Hindmarsh-Rose neurons. Lect. Notes Comput. Sci. 5864 (2009), 401-408. DOI 10.1007/978-3-642-10684-2_45
[8] Hrg, D.: Synchronization of two Hindmarsh-Rose neurons with unidirectional coupling. Neural Netw. 40 (2013), 73-79. DOI 10.1016/j.neunet.2012.12.010 | Zbl 1283.92017
[9] Khalil, H. K.: Nonlinear Systems. Third edition. Prentice Hall, Upper Saddle River 2002.
[10] Kuntanapreeda, S.: Chaos synchronization of unified chaotic systems via LMI. Phys. Lett. A 373 (2009), 2837-2840. DOI 10.1016/j.physleta.2009.06.006 | Zbl 1233.93047
[11] Li, H. Y., Hu, Y. A., Wang, R. Q.: Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties. Kybernetika 49 (2013), 554-567. MR 3117914
[12] Li, R., He, Z.: Bifurcations and chaos in a two-dimensional discrete Hindmarsh-Rose model. Nonlinear Dynam. 76 (2014), 697-715. DOI 10.1007/s11071-013-1161-8 | MR 3189203 | Zbl 1319.37024
[13] Liang, H., Wang, Z., Yue, Z., Lu, R.: Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication. Kybernetika 48 (2012), 190-205. MR 2954320 | Zbl 1256.93084
[14] Liu, X., Liu, S.: Codimension-two bifurcation analysis in two-dimensional Hindmarsh-Rose model. Nonlinear Dynam. 67 (2012), 847-857. DOI 10.1007/s11071-011-0030-6 | MR 2869243 | Zbl 1245.34047
[15] Lü, J., Zhou, T., Chen, G., Yang, X.: Generating chaos with a switching piecewise-linear controller. Chaos 12 (2002), 344-349. DOI 10.1063/1.1478079
[16] Ma, M. H., Zhang, H., Cai, J. P., Zhou, J.: Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch. Kybernetika 49 (2013), 539-553. MR 3117913 | Zbl 1274.70039
[17] Meyer, T., Walker, C., Cho, R. Y., Olson, C. R.: Image familiarization sharpens response dynamics of neurons in inferotemporal cortex. Nat. Neurosci. 17 (2014), 1388-1394. DOI 10.1038/nn.3794
[18] Nguyena, L. H., Hong, K. S.: Synchronization of coupled chaotic FitzHugh-Nagumo neurons via Lyapunov functions. Math. Comput. Simulations 82 (2011), 590-603. DOI 10.1016/j.matcom.2011.10.005 | MR 2877386
[19] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic system. Phys. Rev. Lett. 64 (1990), 821-824. DOI 10.1103/physrevlett.64.821 | MR 1038263
[20] Sadeghi, S., Valizadeh, A.: Synchronization of delayed coupled neurons in presence of inhomogeneity. J. Comput. Neurosci. 36 (2014), 55-66. DOI 10.1007/s10827-013-0461-9 | MR 3160746
[21] Sedov, A. S., Medvednik, R. S., Raeva, S. N.: Significance of local synchronization and oscillatory processes of thalamic neurons in goal-directed human behavior. Hum. Physiol. 40 (2014), 1-7. DOI 10.1134/s0362119714010137
[22] Shen, C. W., Yu, S. M., Lu, J. H., Chen, G. R.: A Systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Trans. Circuits Syst. I: Reg. Papers 61 (2014), 854-864. DOI 10.1109/tcsi.2013.2283994
[23] Shen, C. W., Yu, S. M., Lu, J. H., Chen, G. R.: Designing hyperchaotic systems with any desired number of positive lyapunov exponents via a simple model. IEEE Trans. Circuits Syst. I: Reg. Papers 61 (2014), 2380-2389. DOI 10.1109/tcsi.2014.2304655
[24] Tan, X. H., Zhang, J. Y., Yang, Y. R.: Synchronizing chaotic systems using backstepping design. Chaos Soliton Fract. 16 (2003), 37-45. DOI 10.1016/s0960-0779(02)00153-4 | MR 1941155 | Zbl 1035.34025
[25] Wang, J. G., Cai, J. P., Ma, M. H., Feng, J. C.: Synchronization with error bound of non-identical forced oscillators. Kybernetika 44 (2008), 534-545. MR 2459071 | Zbl 1173.70009
[26] Wang, Q., Lu, Q., Chen, G., Guo, D.: Chaos synchronization of coupled neurons with gap junction. Phys. Lett. A 356 (2006), 17-25. DOI 10.1016/j.physleta.2006.03.017
[27] Wang, C. N., Ma, J., Tang, J., Li, Y. L.: Instability and death of spiral wave in a two-dimensional array of Hindmarsh-Rose neurons. Commun. Theor. Phys. 53 (2010), 382-388. DOI 10.1088/0253-6102/53/2/32
[28] Wei, Z., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika 49 (2013), 359-374. MR 3085401 | Zbl 1276.34043
[29] Wu, X. F., Zhao, Y., Wang, M. H.: Global synchronization of chaotic Lur'e systems via replacing variables control. Kybernetika 44 (2008), 571-584. MR 2459074 | Zbl 1175.37040
[30] Wu, A. L., Zeng, Z. G.: Exponential passivity of memristive neural networks with time delays. Neural Netw. 49 (2014), 11-18. DOI 10.1016/j.neunet.2013.09.002 | Zbl 1296.93153
Partner of
EuDML logo