Previous |  Up |  Next

Article

Keywords:
absolute synchronization; delay; linear stability; neural network
Summary:
In this paper, we consider a three-unit delayed neural network system, investigate the linear stability, and obtain some sufficient conditions ensuring the absolute synchronization of the system by the Lyapunov function. Numerical simulations show that the theoretically predicted results are in excellent agreement with the numerically observed behavior.
References:
[1] Albertini, F., Alessandro, D.: Further conditions on the stability of continuous time systems with saturation. IEEE Trans. Circuits Syst I. 47 (2000), 723-729. DOI 10.1109/81.847877
[2] Bélair, J., Campbell, S. A., Driessche, P. van den: Frustration, stability, and delay-induced oscillations in a neural network model. SIAM J. Appl. Math. 56 (1996), 245-255. DOI 10.1137/s0036139994274526 | MR 1372899
[3] Bélair, J.: Stability in a model of a delayed neural network. J. Dynam. Dif. Equns. 5 (1993), 603-623. DOI 10.1007/bf01049141 | MR 1250263 | Zbl 0796.34063
[4] Bélair, J., Campbell, S. A.: Stability and bifurcations of equilibria in a multiple-delayed differential equation. SIAM J. Appl. Math. 54 (1994), 1402-1424. DOI 10.1137/s0036139993248853 | MR 1293106 | Zbl 0809.34077
[5] Beuter, A., Belair, J., Labrie, C.: Feedback and delays in neurological diseases: a modelling study using dynamical systems. Bull. Math. Biol. 55 (1993), 525-541. DOI 10.1016/s0092-8240(05)80238-1
[6] Campbell, S. A., Ruan, S., Wolkowicz, G. S. K., Wu, J.: Stability and bifurcation of a simple neural network with multiple time delays. Fields Institute Communications, vol. 21, American Mathematical Society, Providence, RI, 1998, pp. 65-79. MR 1662603
[7] Chen, Y., Huang, Y., Wu, J.: desynchronization of large scale delayed neural networks. Proc. Amer. Math. Soc. 128 (2000), 2365-2371. DOI 10.1090/s0002-9939-00-05635-5 | MR 1709744 | Zbl 0945.34056
[8] Chen, Y., Lü, J. H., Lin, Z. L.: Consensus of discrete-time multi-agent systems with transmission nonlinearity. Automatica 49 (2013), 1768-1775. DOI 10.1016/j.automatica.2013.02.021 | MR 3049226
[9] Cushing, J. M.: Integro-differential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomath, vol. 20, Springer, New York 1977. DOI 10.1007/978-3-642-93073-7
[10] Dhamala, M., Jirsa, V., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92 (2004), 74-104. DOI 10.1103/physrevlett.92.074104
[11] Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H. O.: Delay Equations, Functional, Complex, and Nonlinear Analysis. Springer Verlag, New York 1995. DOI 10.1007/978-1-4612-4206-2 | MR 1345150
[12] ., P., Driessche, Zou, X.: Global attractivity in delayed Hopfield neural network models. SIAM J. Appl. Math. 58 (1998), 1878-1890. DOI 10.1137/s0036139997321219 | MR 1638696
[13] Faria, T.: On a planar system modelling a neuron network with memory. J. Diff. Equns. 168 (2000), 129-149. DOI 10.1006/jdeq.2000.3881 | MR 1801347 | Zbl 0961.92002
[14] Faria, T., Magalhes, L. T.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Diff. Equations. 122 (1995), 181-200. DOI 10.1006/jdeq.1995.1144 | MR 1355888
[15] Gopalsamy, K., Leung, I.: Delay induced periodicity in a neural network of excitation and inhibition. Physica D. 89 (1996), 395-426. DOI 10.1016/0167-2789(95)00203-0 | MR 1369242
[16] Hale, J.: Theory of Functional Differential Equations. Springer, New York 1997. MR 0508721 | Zbl 0662.34064
[17] Hale, J., Kocak, H.: Dynamics and Bifurcations. Springer, New York 1991. MR 1138981 | Zbl 0745.58002
[18] Hale, J., Lunel, S. V.: Introduction to Functional Differential Equations. Springer, New York 1993. DOI 10.1007/978-1-4612-4342-7 | MR 1243878 | Zbl 0787.34002
[19] Hirsch, M. W.: Convergent activation dynamics in continuous-time networks. Neural Networks 2 (1989), 331-349. DOI 10.1016/0893-6080(89)90018-x
[20] Hopfield, J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81 (1994), 3088-3092. DOI 10.1073/pnas.81.10.3088
[21] Huang, L., Wu, J.: Dynamics of inhibitory artificial neural networks with threshold nonlinearity. Fields Ins. Commun. 29 (2001), 235-243. MR 1821784 | Zbl 0973.92002
[22] Karimi, H. R., Gao, H. J.: New Delay-Dependent Exponential H$\infty$ Synchronization for Uncertain Neural Networks with Mixed Time Delays. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 40 (2010), 173-185. DOI 10.1109/tsmcb.2009.2024408
[23] Liu, Y. R., Wang, Z. D., Liang, J. L.: Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays. IEEE Transactions on Neural Networks 20 (2009), 1102-1116. DOI 10.1109/tnn.2009.2016210
[24] Lü, J. H., Chen, G. R.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control 50 (2005), 6, 841-846. DOI 10.1109/tac.2005.849233 | MR 2142000
[25] Marcus, C. M., Westervelt, R. M.: Stability of analog neural networks with delay. Phys. Rev. A. 39 (1989), 347-359. DOI 10.1103/physreva.39.347 | MR 0978323
[26] Niebur, E., Schuster, H., Kammen, D.: Collective frequencies and meta stability in networks of limit-cycle oscillators with time delay. Phys. Rev. Lett. 67 (1991), 2753-2756. DOI 10.1103/physrevlett.67.2753
[27] Rosenblum, M. G., Pikovsky, A. S.: Controlling synchronization in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 92 (2004), 102-114. DOI 10.1103/physrevlett.92.114102
[28] Ruan, S., Wei, J.: On the zeros of transcendental functions with applications to stability of delayed differential equations with two delays, Dyn. Discrete Impuls Syst Ser A: Math. Anal. 10 (2003), 63-74. MR 2008751
[29] Wu, J.: Introduction to Neural Dynamics and Signal Transmission Delay. Walter de Cruyter, Berlin 2001. DOI 10.1515/9783110879971 | MR 1834537 | Zbl 0977.34069
[30] Wu, J.: Symmetric functional differential equations and neural networks with memory. Trans. Amer. Math. Soc. 350 (1998), 4799-4838. DOI 10.1515/9783110879971 | MR 1451617 | Zbl 0905.34034
[31] Yeung, M., Strogatz, S.: Time delay in the Kuramoto model of coupled oscillators. Phys. Rev. Lett. 82 (1999), 648-651. DOI 10.1103/physrevlett.82.648 | MR 2699004
[32] Zhou, J., Lu, J. A., Lü, J. H.: Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Automat. Control 51 (2006), 4, 652-656. DOI 10.1109/tac.2006.872760 | MR 2228029
Partner of
EuDML logo