[1] Albertini, F., Alessandro, D.:
Further conditions on the stability of continuous time systems with saturation. IEEE Trans. Circuits Syst I. 47 (2000), 723-729.
DOI 10.1109/81.847877
[2] Bélair, J., Campbell, S. A., Driessche, P. van den:
Frustration, stability, and delay-induced oscillations in a neural network model. SIAM J. Appl. Math. 56 (1996), 245-255.
DOI 10.1137/s0036139994274526 |
MR 1372899
[5] Beuter, A., Belair, J., Labrie, C.:
Feedback and delays in neurological diseases: a modelling study using dynamical systems. Bull. Math. Biol. 55 (1993), 525-541.
DOI 10.1016/s0092-8240(05)80238-1
[6] Campbell, S. A., Ruan, S., Wolkowicz, G. S. K., Wu, J.:
Stability and bifurcation of a simple neural network with multiple time delays. Fields Institute Communications, vol. 21, American Mathematical Society, Providence, RI, 1998, pp. 65-79.
MR 1662603
[9] Cushing, J. M.:
Integro-differential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomath, vol. 20, Springer, New York 1977.
DOI 10.1007/978-3-642-93073-7
[11] Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H. O.:
Delay Equations, Functional, Complex, and Nonlinear Analysis. Springer Verlag, New York 1995.
DOI 10.1007/978-1-4612-4206-2 |
MR 1345150
[14] Faria, T., Magalhes, L. T.:
Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Diff. Equations. 122 (1995), 181-200.
DOI 10.1006/jdeq.1995.1144 |
MR 1355888
[20] Hopfield, J.:
Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81 (1994), 3088-3092.
DOI 10.1073/pnas.81.10.3088
[21] Huang, L., Wu, J.:
Dynamics of inhibitory artificial neural networks with threshold nonlinearity. Fields Ins. Commun. 29 (2001), 235-243.
MR 1821784 |
Zbl 0973.92002
[22] Karimi, H. R., Gao, H. J.:
New Delay-Dependent Exponential H$\infty$ Synchronization for Uncertain Neural Networks with Mixed Time Delays. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 40 (2010), 173-185.
DOI 10.1109/tsmcb.2009.2024408
[23] Liu, Y. R., Wang, Z. D., Liang, J. L.:
Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays. IEEE Transactions on Neural Networks 20 (2009), 1102-1116.
DOI 10.1109/tnn.2009.2016210
[24] Lü, J. H., Chen, G. R.:
A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control 50 (2005), 6, 841-846.
DOI 10.1109/tac.2005.849233 |
MR 2142000
[26] Niebur, E., Schuster, H., Kammen, D.:
Collective frequencies and meta stability in networks of limit-cycle oscillators with time delay. Phys. Rev. Lett. 67 (1991), 2753-2756.
DOI 10.1103/physrevlett.67.2753
[27] Rosenblum, M. G., Pikovsky, A. S.:
Controlling synchronization in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 92 (2004), 102-114.
DOI 10.1103/physrevlett.92.114102
[28] Ruan, S., Wei, J.:
On the zeros of transcendental functions with applications to stability of delayed differential equations with two delays, Dyn. Discrete Impuls Syst Ser A: Math. Anal. 10 (2003), 63-74.
MR 2008751
[32] Zhou, J., Lu, J. A., Lü, J. H.:
Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Automat. Control 51 (2006), 4, 652-656.
DOI 10.1109/tac.2006.872760 |
MR 2228029