[3] Cieślak, T., Stinner, C.: 
Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J. Differ. Equations 252 (2012), 5832-5851. 
DOI 10.1016/j.jde.2012.01.045 | 
MR 2902137 | 
Zbl 1252.35087[4] Herrero, M. A., Velázquez, J. J. L.: 
A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4. 24 (1997), 633-683. 
MR 1627338 | 
Zbl 0904.35037[8] Nagai, T., Senba, T., Yoshida, K.: 
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj. Ser. Int. 40 (1997), 411-433. 
MR 1610709 | 
Zbl 0901.35104[9] Osaki, K., Yagi, A.: 
Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj. Ser. Int. 44 (2001), 441-469. 
MR 1893940 | 
Zbl 1145.37337[10] Painter, K. J., Hillen, T.: 
Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10 (2002), 501-543. 
MR 2052525 | 
Zbl 1057.92013[11] Tao, Y., Winkler, M.: 
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equations 252 (2012), 692-715. 
DOI 10.1016/j.jde.2011.08.019 | 
MR 2852223