Previous |  Up |  Next

Article

Title: On the opial type criterion for the well-posedness of the Cauchy problem for linear systems of generalized ordinary differential equations (English)
Author: Ashordia, Malkhaz
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 2
Year: 2016
Pages: 183-215
Summary lang: English
.
Category: math
.
Summary: The Cauchy problem for the system of linear generalized ordinary differential equations in the J. Kurzweil sense ${\rm d} x(t)={\rm d} A_0(t)\cdot x(t)+{\rm d} f_0(t)$, $x(t_{0})=\nobreak c_0$ $(t\in I)$ with a unique solution $x_0$ is considered. Necessary and sufficient conditions are obtained for a sequence of the Cauchy problems ${\rm d} x(t)={\rm d} A_k(t)\cdot x(t)+{\rm d} f_k(t)$, $x(t_{k})=c_k$ $(k=1,2,\dots )$ to have a unique solution $x_k$ for any sufficiently large $k$ such that $x_k(t)\to x_0(t)$ uniformly on $I$. Presented results are analogous to the sufficient conditions due to Z. Opial for linear ordinary differential systems. Moreover, efficient sufficient conditions for the problem of well-posedness are given. (English)
Keyword: linear system of generalized ordinary differential equations in the Kurzweil sense
Keyword: Cauchy problem
Keyword: well-posedness
Keyword: Opial type necessary condition
Keyword: Opial type sufficient condition
Keyword: efficient sufficient condition
MSC: 34A12
MSC: 34A30
MSC: 34K06
idZBL: Zbl 06587862
idMR: MR3499784
DOI: 10.21136/MB.2016.15
.
Date available: 2016-05-19T09:06:31Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145712
.
Reference: [1] Ashordia, M.: Lyapunov stability of systems of linear generalized ordinary differential equations.Comput. Math. Appl. 50 (2005), 957-982. Zbl 1090.34043, MR 2165650, 10.1016/j.camwa.2004.04.041
Reference: [2] Ashordia, M.: On the general and multipoint boundary value problems for linear systems of generalized ordinary differential equations, linear impulse and linear difference systems.Mem. Differ. Equ. Math. Phys. 36 (2005), 1-80. Zbl 1098.34010, MR 2196660
Reference: [3] Ashordia, M.: Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations.Czech. Math. J. 46(121) (1996), 385-404. Zbl 0879.34037, MR 1408294
Reference: [4] Ashordia, M.: On the correctness of nonlinear boundary value problems for systems of generalized ordinary differential equations.Georgian Math. J. 3 (1996), 501-524. Zbl 0876.34021, MR 1419831, 10.1007/BF02259778
Reference: [5] Ashordia, M.: On the stability of solutions of the multipoint boundary value problem for the system of generalized ordinary differential equations.Mem. Differ. Equ. Math. Phys. 6 (1995), 1-57. MR 1415807
Reference: [6] Ashordia, M.: On the correctness of linear boundary value problems for systems of generalized ordinary differential equations.Proc. Georgian Acad. Sci. Math. 1 (1993), 385-394 this paper also appears in Georgian Math. J. 1 (1994), 343-351. Zbl 0808.34015, MR 1262572, 10.1007/BF02307443
Reference: [7] Ashordia, M.: On the stability of solutions of linear boundary value problems for the system of ordinary differential equations.Proc. Georgian Acad. Sci. Math. 1 (1993), 129-141 this paper also appears in Georgian Math. J. 1 (1994), 115-126. MR 1251497, 10.1007/BF02254726
Reference: [8] Ashordiya, M. T.: Well-posedness of the Cauchy problem for linear systems of generalized ordinary differential equations on an infinite interval.Differ. Equ. 40 477-490 (2004), translation from Differ. Uravn. 40 443-454 (2004). Zbl 1087.34002, MR 2153643, 10.1023/B:DIEQ.0000035786.69859.d8
Reference: [9] Ashordiya, M. T.: Well-posedness of the Cauchy-Nicoletti boundary value problem for systems of nonlinear generalized ordinary differential equations.Differ. Equations 31 (1995), 352-362 translation from Differ. Uravn. 31 382-392 (1995). Zbl 0853.34018, MR 1373033
Reference: [10] Halas, Z.: Continuous dependence of inverse fundamental matrices of generalized linear ordinary differential equations on a parameter.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 44 (2005), 39-48. Zbl 1092.34003, MR 2218566
Reference: [11] Hildebrandt, T. H.: On systems of linear differentio-Stieltjes-integral equations.Ill. J. Math. 3 (1959), 352-373. Zbl 0088.31101, MR 0105600, 10.1215/ijm/1255455257
Reference: [12] Kiguradze, I.: The Initial Value Problem and Boundary Value Problems for Systems of Ordinary Differential Equations. Vol. 1. Linear Theory.Metsniereba, Tbilisi (1997), Russian. MR 1484729
Reference: [13] Kiguradze, I. T.: Boundary-value problems for systems of ordinary differential equations.J. Sov. Math. 43 (1988), 2259-2339 translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 3-103 (1987). Zbl 0631.34020, MR 0925829, 10.1007/BF01100360
Reference: [14] Krasnosel'skiĭ, M. A., Kreĭn, S. G.: On the principle of averaging in nonlinear mechanics.Uspekhi Mat. Nauk (N.S.) 10 147-152 Russian (1955). MR 0071596
Reference: [15] Kurzweil, J.: Generalized Ordinary Differential Equations. Not Absolutely Continuous Solutions.Series in Real Analysis 11 World Scientific Publishing, Hackensack (2012). Zbl 1248.34001, MR 2906899
Reference: [16] Kurzweil, J.: Generalized ordinary differential equations.Czech. Math. J. 8 (83) (1958), 360-388. Zbl 0102.07003, MR 0111878
Reference: [17] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (82) (1957), 418-449. Zbl 0090.30002, MR 0111875
Reference: [18] Kurzweil, J., Vorel, Z.: Continuous dependence of solutions of differential equations on a parameter.Czech. Math. J. 7 (82) 568-583 (1957), Russian. Zbl 0090.30001, MR 0111874
Reference: [19] Monteiro, G. A., Tvrdý, M.: Continuous dependence of solutions of abstract generalized linear differential equations with potential converging uniformly with a weight.Bound. Value Probl. (electronic only) 2014 (2014), Article ID 71, 18 pages. Zbl 1303.45001, MR 3352635
Reference: [20] Opial, Z.: Linear problems for systems of nonlinear differential equations.J. Differ. Equations 3 (1967), 580-594. Zbl 0161.06102, MR 0216068, 10.1016/0022-0396(67)90018-6
Reference: [21] Schwabik, Š.: Generalized Ordinary Differential Equations.Series in Real Analysis 5 World Scientific Publishing, Singapore (1992). Zbl 0781.34003, MR 1200241
Reference: [22] Schwabik, {Š}., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations. Boundary Value Problems and Adjoints.Czechoslovak Academy of Sciences Reidel Publishing, Dordrecht-Boston (1979). Zbl 0417.45001, MR 0542283
Reference: [23] Tvrd{ý}, M.: Differential and integral equations in the space of regulated functions.Mem. Differ. Equ. Math. Phys. 25 (2002), 1-104. Zbl 1081.34504, MR 1903190
.

Files

Files Size Format View
MathBohem_141-2016-2_6.pdf 362.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo