Previous |  Up |  Next

Article

Title: Henstock-Kurzweil integral on ${\rm BV}$ sets (English)
Author: Malý, Jan
Author: Pfeffer, Washek F.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 2
Year: 2016
Pages: 217-237
Summary lang: English
.
Category: math
.
Summary: The generalized Riemann integral of Pfeffer (1991) is defined on all bounded $\rm BV$ subsets of $\mathbb R^n$, but it is additive only with respect to pairs of disjoint sets whose closures intersect in a set of $\sigma $-finite Hausdorff measure of codimension one. Imposing a stronger regularity condition on partitions of $\rm BV$ sets, we define a Riemann-type integral which satisfies the usual additivity condition and extends the integral of Pfeffer. The new integral is lipeomorphism-invariant and closed with respect to the formation of improper integrals. Its definition in $\mathbb R$ coincides with the Henstock-Kurzweil definition of the Denjoy-Perron integral. (English)
Keyword: Henstock-Kurzweil integral
Keyword: charge
Keyword: $\rm BV$ set
MSC: 26B20
MSC: 28A25
idZBL: Zbl 06587863
idMR: MR3499785
DOI: 10.21136/MB.2016.16
.
Date available: 2016-05-19T09:07:52Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145713
.
Reference: [1] Denjoy, A.: Une extension de l'intégrale de M. Lebesgue.C. R. Acad. Sci., Paris 154 (1912), 859-862 French.
Reference: [2] Pauw, T. De, Pfeffer, W.F.: Distributions for which $ div v={F}$ has continuous solution.Commun. Pure Appl. Math. 61 (2008), 230-260. MR 2368375, 10.1002/cpa.20204
Reference: [3] Gordon, R.A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4 American Mathematical Society, Providence (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004/09
Reference: [4] Henstock, R.: A Riemann type integral of Lebesgue power.Can. J. Math. 20 (1968), 79-87. Zbl 0171.01804, MR 0219675, 10.4153/CJM-1968-010-5
Reference: [5] Henstock, R.: Definitions of Riemann type of the variational integrals.Proc. Lond. Math. Soc. (3) 11 (1961), 402-418. Zbl 0099.27402, MR 0132147, 10.1112/plms/s3-11.1.402
Reference: [6] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7(82) (1957), 418-449. Zbl 0090.30002, MR 0111875
Reference: [7] Jarník, J., Kurzweil, J.: A non absolutely convergent integral which admits transformation and can be used for integration on manifolds.Czech. Math. J. 35(110) (1985), 116-139. Zbl 0614.26007, MR 0779340
Reference: [8] Jarník, J., Kurzweil, J.: A nonabsolutely convergent integral which admits $C^1$-transfor-mations.Čas. Pěst. Mat. 109 (1984), 157-167. MR 0744873
Reference: [9] Jarník, J., Kurzweil, J., Schwabik, Š.: On Mawhin's approach to multiple nonabsolutely convergent integral.Čas. Pěst. Mat. 108 (1983), 356-380. Zbl 0555.26004, MR 0727536
Reference: [10] Mawhin, J.: Generalized multiple Perron integrals and the Green-{G}oursat theorem for differentiable vector fields.Czech. Math. J. 31(106) (1981), 614-632. Zbl 0562.26004, MR 0631606
Reference: [11] Mawhin, J.: Generalized Riemann integrals and the divergence theorem for differentiable vector fields.E. B. Christoffel. The Influence of His Work on Mathematics and the Physical Sciences. Int. Christoffel Symp. in Honour of Christoffel on the 150th Anniversary of his Birth, Aachen and Monschau, Germany, 1979 Birkhäuser, Basel (1981), 704-714 P. L. Butzer et al. Zbl 0562.26003, MR 0661109
Reference: [12] Perron, O.: Über den Integralbegriff.Heidelb. Ak. Sitzungsber. 14 Heidelberg German (1914).
Reference: [13] Pfeffer, W.F.: The Divergence Theorem and Sets of Finite Perimeter.Pure and Applied Mathematics 303 CRC Press, Boca Raton (2012). Zbl 1258.28002, MR 2963550, 10.1201/b11919-10
Reference: [14] Pfeffer, W.F.: Derivatives and primitives.Sci. Math. Jpn. 55 (2002), 399-425. Zbl 1010.26012, MR 1887074
Reference: [15] Pfeffer, W.F.: Derivation and Integration.Cambridge Tracts in Mathematics 140 Cambridge University Press, Cambridge (2001). Zbl 0980.26008, MR 1816996
Reference: [16] Pfeffer, W.F.: The {Gauss-Green} theorem.Adv. Math. 87 (1991), 93-147. Zbl 0732.26013, MR 1102966, 10.1016/0001-8708(91)90063-D
Reference: [17] Pfeffer, W.F.: The multidimensional fundamental theorem of calculus.J. Aust. Math. Soc., Ser. A 43 (1987), 143-170. Zbl 0638.26011, MR 0896622, 10.1017/S1446788700029293
Reference: [18] Pfeffer, W.F.: A Riemann-type integral and the divergence theorem.C.R. Acad. Sci., Paris, (1) 299 (1984), 299-301 French. Zbl 0574.26009, MR 0761251
.

Files

Files Size Format View
MathBohem_141-2016-2_7.pdf 327.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo