Title:
|
Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions (English) |
Author:
|
Mawhin, Jean |
Author:
|
Szymańska-Dębowska, Katarzyna |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
141 |
Issue:
|
2 |
Year:
|
2016 |
Pages:
|
239-259 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A couple ($\sigma ,\tau $) of lower and upper slopes for the resonant second order boundary value problem $$ x'' = f(t,x,x'), \quad x(0) = 0,\quad x'(1) = \int _0^1 x'(s) {\rm d}g(s), $$ with $g$ increasing on $[0,1]$ such that $\int _0^1 dg = 1$, is a couple of functions $\sigma , \tau \in C^1([0,1])$ such that $\sigma (t) \leq \tau (t)$ for all $t \in [0,1]$, \begin {gather} \sigma '(t) \geq f(t,x,\sigma (t)), \quad \sigma (1) \leq \int _0^1 \sigma (s) {\rm d}g(s),\nonumber \\ \tau '(t) \leq f(t,x,\tau (t)), \quad \tau (1) \geq \int _0^1 \tau (s) {\rm d}g(s),\nonumber \end {gather} in the stripe $\int _0^t\sigma (s) {\rm d}s \leq x \leq \int _0^t \tau (s) {\rm d}s$ and $t \in [0,1]$. It is proved that the existence of such a couple $(\sigma ,\tau )$ implies the existence and localization of a solution to the boundary value problem. Multiplicity results are also obtained. (English) |
Keyword:
|
nonlocal boundary value problem |
Keyword:
|
lower solution |
Keyword:
|
upper solution |
Keyword:
|
lower slope |
Keyword:
|
upper slope |
Keyword:
|
Leray-Schauder degree |
MSC:
|
34B10 |
MSC:
|
34B15 |
MSC:
|
47H11 |
idZBL:
|
Zbl 06587864 |
idMR:
|
MR3499786 |
DOI:
|
10.21136/MB.2016.17 |
. |
Date available:
|
2016-05-19T09:09:16Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145714 |
. |
Reference:
|
[1] Amann, H.: On the number of solutions of nonlinear equations in ordered Banach spaces.J. Funct. Anal. 11 (1972), 346-384. Zbl 0244.47046, MR 0358470, 10.1016/0022-1236(72)90074-2 |
Reference:
|
[2] Amann, H.: Existence of multiple solutions for nonlinear elliptic boundary value problems.Indiana Univ. Math. J. 21 (1971/72), 925-935. MR 0320517, 10.1512/iumj.1972.21.21074 |
Reference:
|
[3] Benchohra, M., Hamani, S., Nieto, J. J.: The method of upper and lower solutions for second order differential inclusions with integral boundary conditions.Rocky Mt. J. Math. 40 (2010), 13-26. Zbl 1205.34013, MR 2607106, 10.1216/RMJ-2010-40-1-13 |
Reference:
|
[4] Benchohra, M., Ouahab, A.: Upper and lower solutions method for differential inclusions with integral boundary conditions.J. Appl. Math. Stochastic Anal. 2006 (2006), Article ID 10490, 10 pages. Zbl 1122.34006, MR 2212591 |
Reference:
|
[5] Cabada, A., Grossinho, M. R., Minhós, F.: Extremal solutions for third-order nonlinear problems with upper and lower solutions in reversed order.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 62 (2005), 1109-1121. Zbl 1084.34013, MR 2153000, 10.1016/j.na.2005.04.023 |
Reference:
|
[6] Coster, C. De, Habets, P.: Two-Point Boundary Value Problems: Lower and Upper Solutions.Mathematics in Science and Engineering 205 Elsevier, Amsterdam (2006). Zbl 1330.34009, MR 2225284 |
Reference:
|
[7] Gao, H., Weng, S., Jiang, D., Hou, X.: On second order periodic boundary-value problems with upper and lower solutions in the reversed order.Electron. J. Differ. Equ. (electronic only) 2006 (2006), Article No. 25, 8 pages. Zbl 1096.34010, MR 2212929 |
Reference:
|
[8] Gupta, C. P.: A second order $m$-point boundary value problem at resonance.Nonlinear Anal., Theory Methods Appl. 24 (1995), 1483-1489. Zbl 0839.34027, MR 1327929, 10.1016/0362-546X(94)00204-U |
Reference:
|
[9] Gupta, C. P., Ntouyas, S. K., Tsamatos, P. C.: Existence results for $m$-point boundary value problems.Differ. Equ. Dyn. Syst. 2 (1994), 289-298. Zbl 0877.34019, MR 1386275 |
Reference:
|
[10] Gupta, C. P., Trofimchuk, S.: Solvability of a multi-point boundary value problem of Neumann type.Abstr. Appl. Anal. 4 (1999), 71-81. MR 1810319, 10.1155/S1085337599000093 |
Reference:
|
[11] Karakostas, G. L., Tsamatos, P. C.: On a nonlocal boundary value problem at resonance.J. Math. Anal. Appl. 259 (2001), 209-218. Zbl 1002.34057, MR 1836454, 10.1006/jmaa.2000.7411 |
Reference:
|
[12] Karakostas, G. L., Tsamatos, P. C.: Positive solutions for a nonlocal boundary-value problem with increasing response.Electron. J. Differ. Equ. (electronic only) 2000 (2000), Article No. 73, 8 pages. Zbl 0971.34008, MR 1801638 |
Reference:
|
[13] Lian, H., Geng, F.: Multiple unbounded solutions for a boundary value problem on infinite intervals.Bound. Value Probl. (electronic only) 2011 (2011), Article ID 51, 8 pages. Zbl 1275.34043, MR 2891965 |
Reference:
|
[14] Lin, X.: Existence of solutions to a nonlocal boundary value problem with nonlinear growth.Bound. Value Probl. 2011 (2011), ID 416416, 15 pages. Zbl 1213.34029, MR 2739198 |
Reference:
|
[15] Pang, H., Lu, M., Cai, C.: The method of upper and lower solutions to impulsive differential equations with integral boundary conditions.Adv. Difference Equ. (electronic only) 2014 (2014), Article No. 183, 11 pages. MR 3357338 |
Reference:
|
[16] Rachůnková, I.: Upper and lower solutions and multiplicity results.J. Math. Anal. Appl. 246 446-464 (2000). Zbl 0961.34004, MR 1761941, 10.1006/jmaa.2000.6798 |
Reference:
|
[17] Rachůnková, I.: Upper and lower solutions and topological degree.J. Math. Anal. Appl. 234 (1999), 311-327. MR 1694813, 10.1006/jmaa.1999.6375 |
Reference:
|
[18] Rachůnková, I., Staněk, S., Tvrdý, M.: Solvability of nonlinear singular problems for ordinary differential equations.Contemporary Mathematics and Its Applications 5 Hindawi Publishing Corporation, New York (2008). Zbl 1228.34003, MR 2572243 |
Reference:
|
[19] Szymańska-Dębowska, K.: The solvability of a nonlocal boundary value problem.Math. Slovaca 65 (2015), 1027-1034. MR 3433052, 10.1515/ms-2015-0070 |
. |