# Article

Full entry | PDF   (0.3 MB)
Keywords:
nonlocal boundary value problem; lower solution; upper solution; lower slope; upper slope; Leray-Schauder degree
Summary:
A couple ($\sigma ,\tau$) of lower and upper slopes for the resonant second order boundary value problem $$x'' = f(t,x,x'), \quad x(0) = 0,\quad x'(1) = \int _0^1 x'(s) {\rm d}g(s),$$ with $g$ increasing on $[0,1]$ such that $\int _0^1 dg = 1$, is a couple of functions $\sigma , \tau \in C^1([0,1])$ such that $\sigma (t) \leq \tau (t)$ for all $t \in [0,1]$, \begin {gather} \sigma '(t) \geq f(t,x,\sigma (t)), \quad \sigma (1) \leq \int _0^1 \sigma (s) {\rm d}g(s),\nonumber \\ \tau '(t) \leq f(t,x,\tau (t)), \quad \tau (1) \geq \int _0^1 \tau (s) {\rm d}g(s),\nonumber \end {gather} in the stripe $\int _0^t\sigma (s) {\rm d}s \leq x \leq \int _0^t \tau (s) {\rm d}s$ and $t \in [0,1]$. It is proved that the existence of such a couple $(\sigma ,\tau )$ implies the existence and localization of a solution to the boundary value problem. Multiplicity results are also obtained.
References:
[1] Amann, H.: On the number of solutions of nonlinear equations in ordered Banach spaces. J. Funct. Anal. 11 (1972), 346-384. DOI 10.1016/0022-1236(72)90074-2 | MR 0358470 | Zbl 0244.47046
[2] Amann, H.: Existence of multiple solutions for nonlinear elliptic boundary value problems. Indiana Univ. Math. J. 21 (1971/72), 925-935. DOI 10.1512/iumj.1972.21.21074 | MR 0320517
[3] Benchohra, M., Hamani, S., Nieto, J. J.: The method of upper and lower solutions for second order differential inclusions with integral boundary conditions. Rocky Mt. J. Math. 40 (2010), 13-26. DOI 10.1216/RMJ-2010-40-1-13 | MR 2607106 | Zbl 1205.34013
[4] Benchohra, M., Ouahab, A.: Upper and lower solutions method for differential inclusions with integral boundary conditions. J. Appl. Math. Stochastic Anal. 2006 (2006), Article ID 10490, 10 pages. MR 2212591 | Zbl 1122.34006
[5] Cabada, A., Grossinho, M. R., Minhós, F.: Extremal solutions for third-order nonlinear problems with upper and lower solutions in reversed order. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 62 (2005), 1109-1121. DOI 10.1016/j.na.2005.04.023 | MR 2153000 | Zbl 1084.34013
[6] Coster, C. De, Habets, P.: Two-Point Boundary Value Problems: Lower and Upper Solutions. Mathematics in Science and Engineering 205 Elsevier, Amsterdam (2006). MR 2225284 | Zbl 1330.34009
[7] Gao, H., Weng, S., Jiang, D., Hou, X.: On second order periodic boundary-value problems with upper and lower solutions in the reversed order. Electron. J. Differ. Equ. (electronic only) 2006 (2006), Article No. 25, 8 pages. MR 2212929 | Zbl 1096.34010
[8] Gupta, C. P.: A second order $m$-point boundary value problem at resonance. Nonlinear Anal., Theory Methods Appl. 24 (1995), 1483-1489. DOI 10.1016/0362-546X(94)00204-U | MR 1327929 | Zbl 0839.34027
[9] Gupta, C. P., Ntouyas, S. K., Tsamatos, P. C.: Existence results for $m$-point boundary value problems. Differ. Equ. Dyn. Syst. 2 (1994), 289-298. MR 1386275 | Zbl 0877.34019
[10] Gupta, C. P., Trofimchuk, S.: Solvability of a multi-point boundary value problem of Neumann type. Abstr. Appl. Anal. 4 (1999), 71-81. DOI 10.1155/S1085337599000093 | MR 1810319
[11] Karakostas, G. L., Tsamatos, P. C.: On a nonlocal boundary value problem at resonance. J. Math. Anal. Appl. 259 (2001), 209-218. DOI 10.1006/jmaa.2000.7411 | MR 1836454 | Zbl 1002.34057
[12] Karakostas, G. L., Tsamatos, P. C.: Positive solutions for a nonlocal boundary-value problem with increasing response. Electron. J. Differ. Equ. (electronic only) 2000 (2000), Article No. 73, 8 pages. MR 1801638 | Zbl 0971.34008
[13] Lian, H., Geng, F.: Multiple unbounded solutions for a boundary value problem on infinite intervals. Bound. Value Probl. (electronic only) 2011 (2011), Article ID 51, 8 pages. MR 2891965 | Zbl 1275.34043
[14] Lin, X.: Existence of solutions to a nonlocal boundary value problem with nonlinear growth. Bound. Value Probl. 2011 (2011), ID 416416, 15 pages. MR 2739198 | Zbl 1213.34029
[15] Pang, H., Lu, M., Cai, C.: The method of upper and lower solutions to impulsive differential equations with integral boundary conditions. Adv. Difference Equ. (electronic only) 2014 (2014), Article No. 183, 11 pages. MR 3357338
[16] Rachůnková, I.: Upper and lower solutions and multiplicity results. J. Math. Anal. Appl. 246 446-464 (2000). DOI 10.1006/jmaa.2000.6798 | MR 1761941 | Zbl 0961.34004
[17] Rachůnková, I.: Upper and lower solutions and topological degree. J. Math. Anal. Appl. 234 (1999), 311-327. DOI 10.1006/jmaa.1999.6375 | MR 1694813
[18] Rachůnková, I., Staněk, S., Tvrdý, M.: Solvability of nonlinear singular problems for ordinary differential equations. Contemporary Mathematics and Its Applications 5 Hindawi Publishing Corporation, New York (2008). MR 2572243 | Zbl 1228.34003
[19] Szymańska-Dębowska, K.: The solvability of a nonlocal boundary value problem. Math. Slovaca 65 (2015), 1027-1034. DOI 10.1515/ms-2015-0070 | MR 3433052

Partner of