Previous |  Up |  Next


hysteresis; Prandtl-Ishlinskii operator; Kurzweil integral; market model
Certain financial market strategies are known to exhibit a hysteretic structure similar to the memory observed in plasticity, ferromagnetism, or magnetostriction. The main difference is that in financial markets, the spontaneous occurrence of discontinuities in the time evolution has to be taken into account. We show that one particular market model considered here admits a representation in terms of Prandtl-Ishlinskii hysteresis operators, which are extended in order to include possible discontinuities both in time and in memory. The main analytical tool is the Kurzweil integral formalism, and the main result proves the well-posedness of the process in the space of right-continuous regulated functions.
[1] Janaideh, M. Al, Rakheja, S., Su, C. Y.: An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Transactions on Mechatronics 16 (2011), 734-744 \DOI 10.1109/TMECH.2010.2052366. DOI 10.1109/TMECH.2010.2052366
[2] Brokate, M., Krejčí, P.: Duality in the space of regulated functions and the play operator. Math. Z. 245 (2003), 667-688. DOI 10.1007/s00209-003-0563-6 | MR 2020705 | Zbl 1055.46023
[3] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Applied Mathematical Sciences 121 Springer, New York (1996). DOI 10.1007/978-1-4612-4048-8_5 | MR 1411908 | Zbl 0951.74002
[4] Cross, R., Grinfeld, M., Lamba, H.: Hysteresis and economics- taking the economic past into account. IEEE Control Systems 29 (2009), 30-43 \DOI 10.1109/MCS.2008.930445. DOI 10.1109/MCS.2008.930445 | MR 2477927
[5] Cross, R., Grinfeld, M., Lamba, H.: A mean-field model of investor behaviour. Journal of Physics Conference Series 55 (2006), 55-62 \DOI 10.1088/1742-6596/55/1/005. DOI 10.1088/1742-6596/55/1/005
[6] Cross, R., McNamara, H., Pokrovskii, A., Rachinskii, D.: A new paradigm for modelling hysteresis in macroeconomic flows. Physica B: Condensed Matter. Proc. 6th Int. Symp. on Hysteresis Modeling and Micromagnetics 403 (2008), 231-236 \DOI 10.1016/j.physb.2007.08.017. DOI 10.1016/j.physb.2007.08.017
[7] Grinfeld, M., Lamba, H., Cross, R.: A mesoscopic stock market model with hysteretic agents. Discrete Contin. Dyn. Syst., Ser. B 18 (2013), 403-415. DOI 10.3934/dcdsb.2013.18.403 | MR 2999083 | Zbl 1260.91152
[8] Ishlinskii, A. Yu.: Some applications of statistical methods to describing deformations of bodies. Izv. AN SSSR, Techn. Ser., 9 (1944), 583-590.
[9] Krasnosel'skij, M. A., Pokrovskij, A. V.: Systems with Hysteresis. Transl. from the Russian. Springer, Berlin (1989). MR 0987431 | Zbl 0665.47038
[10] Krejčí, P.: The Kurzweil integral and hysteresis. Journal of Physics: Conference Series 55 (2006), 144-154 \DOI 10.1088/1742-6596/55/1/014. DOI 10.1088/1742-6596/55/1/014
[11] Krejčí, P.: Hysteresis and periodic solutions of semilinear and quasilinear wave equations. Math. Z. 193 (1986), 247-264. DOI 10.1007/BF01174335 | MR 0856153
[12] Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D.: Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2949-2965. DOI 10.3934/dcdsb.2015.20.2949 | MR 3402678 | Zbl 1335.47043
[13] Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D.: Analytical solution for a class of network dynamics with mechanical and financial applications. Phys. Rev. E 90 (2014), 12 pages \DOI 10.1103/PhysRevE.90.032822. DOI 10.1103/PhysRevE.90.032822
[14] Krejčí, P., Laurençot, P.: Generalized variational inequalities. J. Convex Anal. 9 (2002), 159-183. MR 1917394 | Zbl 1001.49014
[15] Kuhnen, K.: Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach. Eur. J. Control 9 (2003), 407-418. DOI 10.3166/ejc.9.407-418 | Zbl 1293.93213
[16] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7(82) (1957), 418-449. MR 0111875 | Zbl 0090.30002
[17] Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8 German (1928), 85-106. DOI 10.1002/zamm.19280080202
[18] Schwabik, Š.: On a modified sum integral of Stieltjes type. Čas. Pěstování Mat. 98 (1973), 274-277. MR 0322114 | Zbl 0266.26007
[19] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations. Boundary Value Problems and Adjoints. Czechoslovak Academy of Sciences D. Reidel Publishing Company, Dordrecht (1979). MR 0542283 | Zbl 0417.45001
[20] Tvrdý, M.: Regulated functions and the Perron-Stieltjes integral. Čas. Pěstování Mat. 114 (1989), 187-209. MR 1063765
Partner of
EuDML logo