Previous |  Up |  Next


Kurzweil-Henstock integral; variational Henstock integral; Pettis integral
We study the integrability of Banach space valued strongly measurable functions defined on $[0,1]$. In the case of functions $f$ given by $\sum \nolimits _{n=1}^{\infty } x_n\chi _{E_n}$, where $x_n $ are points of a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for Bochner and Pettis integrability of $f$. The function $f$ is Bochner integrable if and only if the series $\sum \nolimits _{n=1}^{\infty }x_n|E_n|$ is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability of $f$. In this paper we give some conditions for variational Henstock integrability of a certain class of such functions.
[1] Bongiorno, B., Piazza, L. Di, Musiał, K.: Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions. Math. Bohem. 131 (2006), 211-223. MR 2242846 | Zbl 1112.26015
[2] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15 American Mathematical Society 13, Providence (1977). MR 0453964 | Zbl 0369.46039
[3] Marraffa, V.: A characterization of strongly measurable Kurzweil-Henstock integrable functions and weakly continuous operators. J. Math. Anal. Appl. 340 (2008), 1171-1179. DOI 10.1016/j.jmaa.2007.09.033 | MR 2390920 | Zbl 1141.46021
[4] Marraffa, V.: Strongly measurable Kurzweil-Henstock type integrable functions and series. Quaest. Math. 31 (2008), 379-386. DOI 10.2989/QM.2008. | MR 2527448 | Zbl 1177.28030
[5] Musia{ł}, K.: Topics in the theory of Pettis integration. School on Measure Theory and Real Analysis, Grado, 1991 Rend. Ist. Mat. Univ. Trieste 23 (1993), 177-262. MR 1248654
Partner of
EuDML logo