Previous |  Up |  Next

Article

Title: Variational Henstock integrability of Banach space valued functions (English)
Author: Di Piazza, Luisa
Author: Marraffa, Valeria
Author: Musiał, Kazimierz
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 2
Year: 2016
Pages: 287-296
Summary lang: English
.
Category: math
.
Summary: We study the integrability of Banach space valued strongly measurable functions defined on $[0,1]$. In the case of functions $f$ given by $\sum \nolimits _{n=1}^{\infty } x_n\chi _{E_n}$, where $x_n $ are points of a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for Bochner and Pettis integrability of $f$. The function $f$ is Bochner integrable if and only if the series $\sum \nolimits _{n=1}^{\infty }x_n|E_n|$ is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability of $f$. In this paper we give some conditions for variational Henstock integrability of a certain class of such functions. (English)
Keyword: Kurzweil-Henstock integral
Keyword: variational Henstock integral
Keyword: Pettis integral
MSC: 26A39
idZBL: Zbl 06587866
idMR: MR3499788
DOI: 10.21136/MB.2016.19
.
Date available: 2016-05-19T09:11:08Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145716
.
Reference: [1] Bongiorno, B., Piazza, L. Di, Musiał, K.: Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions.Math. Bohem. 131 (2006), 211-223. Zbl 1112.26015, MR 2242846
Reference: [2] J. Diestel, J. J. Uhl, Jr.: Vector Measures.Mathematical Surveys 15 American Mathematical Society 13, Providence (1977). Zbl 0369.46039, MR 0453964
Reference: [3] Marraffa, V.: A characterization of strongly measurable Kurzweil-Henstock integrable functions and weakly continuous operators.J. Math. Anal. Appl. 340 (2008), 1171-1179. Zbl 1141.46021, MR 2390920, 10.1016/j.jmaa.2007.09.033
Reference: [4] Marraffa, V.: Strongly measurable Kurzweil-Henstock type integrable functions and series.Quaest. Math. 31 (2008), 379-386. Zbl 1177.28030, MR 2527448, 10.2989/QM.2008.31.4.6.610
Reference: [5] Musia{ł}, K.: Topics in the theory of Pettis integration.School on Measure Theory and Real Analysis, Grado, 1991 Rend. Ist. Mat. Univ. Trieste 23 (1993), 177-262. MR 1248654
.

Files

Files Size Format View
MathBohem_141-2016-2_10.pdf 251.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo