Previous |  Up |  Next

Article

Title: The Kurzweil integral in financial market modeling (English)
Author: Krejčí, Pavel
Author: Lamba, Harbir
Author: Monteiro, Giselle Antunes
Author: Rachinskii, Dmitrii
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 2
Year: 2016
Pages: 261-286
Summary lang: English
.
Category: math
.
Summary: Certain financial market strategies are known to exhibit a hysteretic structure similar to the memory observed in plasticity, ferromagnetism, or magnetostriction. The main difference is that in financial markets, the spontaneous occurrence of discontinuities in the time evolution has to be taken into account. We show that one particular market model considered here admits a representation in terms of Prandtl-Ishlinskii hysteresis operators, which are extended in order to include possible discontinuities both in time and in memory. The main analytical tool is the Kurzweil integral formalism, and the main result proves the well-posedness of the process in the space of right-continuous regulated functions. (English)
Keyword: hysteresis
Keyword: Prandtl-Ishlinskii operator
Keyword: Kurzweil integral
Keyword: market model
MSC: 26A39
MSC: 34C55
MSC: 91B26
idZBL: Zbl 06587865
idMR: MR3499787
DOI: 10.21136/MB.2016.18
.
Date available: 2016-05-19T09:10:35Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145715
.
Reference: [1] Janaideh, M. Al, Rakheja, S., Su, C. Y.: An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control.IEEE/ASME Transactions on Mechatronics 16 (2011), 734-744 \DOI 10.1109/TMECH.2010.2052366. 10.1109/TMECH.2010.2052366
Reference: [2] Brokate, M., Krejčí, P.: Duality in the space of regulated functions and the play operator.Math. Z. 245 (2003), 667-688. Zbl 1055.46023, MR 2020705, 10.1007/s00209-003-0563-6
Reference: [3] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Applied Mathematical Sciences 121 Springer, New York (1996). Zbl 0951.74002, MR 1411908, 10.1007/978-1-4612-4048-8_5
Reference: [4] Cross, R., Grinfeld, M., Lamba, H.: Hysteresis and economics- taking the economic past into account.IEEE Control Systems 29 (2009), 30-43 \DOI 10.1109/MCS.2008.930445. MR 2477927, 10.1109/MCS.2008.930445
Reference: [5] Cross, R., Grinfeld, M., Lamba, H.: A mean-field model of investor behaviour.Journal of Physics Conference Series 55 (2006), 55-62 \DOI 10.1088/1742-6596/55/1/005. 10.1088/1742-6596/55/1/005
Reference: [6] Cross, R., McNamara, H., Pokrovskii, A., Rachinskii, D.: A new paradigm for modelling hysteresis in macroeconomic flows.Physica B: Condensed Matter. Proc. 6th Int. Symp. on Hysteresis Modeling and Micromagnetics 403 (2008), 231-236 \DOI 10.1016/j.physb.2007.08.017. 10.1016/j.physb.2007.08.017
Reference: [7] Grinfeld, M., Lamba, H., Cross, R.: A mesoscopic stock market model with hysteretic agents.Discrete Contin. Dyn. Syst., Ser. B 18 (2013), 403-415. Zbl 1260.91152, MR 2999083, 10.3934/dcdsb.2013.18.403
Reference: [8] Ishlinskii, A. Yu.: Some applications of statistical methods to describing deformations of bodies.Izv. AN SSSR, Techn. Ser., 9 (1944), 583-590.
Reference: [9] Krasnosel'skij, M. A., Pokrovskij, A. V.: Systems with Hysteresis. Transl. from the Russian.Springer, Berlin (1989). Zbl 0665.47038, MR 0987431
Reference: [10] Krejčí, P.: The Kurzweil integral and hysteresis.Journal of Physics: Conference Series 55 (2006), 144-154 \DOI 10.1088/1742-6596/55/1/014. 10.1088/1742-6596/55/1/014
Reference: [11] Krejčí, P.: Hysteresis and periodic solutions of semilinear and quasilinear wave equations.Math. Z. 193 (1986), 247-264. MR 0856153, 10.1007/BF01174335
Reference: [12] Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D.: Kurzweil integral representation of interacting Prandtl-Ishlinskii operators.Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2949-2965. Zbl 1335.47043, MR 3402678, 10.3934/dcdsb.2015.20.2949
Reference: [13] Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D.: Analytical solution for a class of network dynamics with mechanical and financial applications.Phys. Rev. E 90 (2014), 12 pages \DOI 10.1103/PhysRevE.90.032822. 10.1103/PhysRevE.90.032822
Reference: [14] Krejčí, P., Laurençot, P.: Generalized variational inequalities.J. Convex Anal. 9 (2002), 159-183. Zbl 1001.49014, MR 1917394
Reference: [15] Kuhnen, K.: Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach.Eur. J. Control 9 (2003), 407-418. Zbl 1293.93213, 10.3166/ejc.9.407-418
Reference: [16] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7(82) (1957), 418-449. Zbl 0090.30002, MR 0111875
Reference: [17] Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper.Z. Angew. Math. Mech. 8 German (1928), 85-106. 10.1002/zamm.19280080202
Reference: [18] Schwabik, Š.: On a modified sum integral of Stieltjes type.Čas. Pěstování Mat. 98 (1973), 274-277. Zbl 0266.26007, MR 0322114
Reference: [19] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations. Boundary Value Problems and Adjoints.Czechoslovak Academy of Sciences D. Reidel Publishing Company, Dordrecht (1979). Zbl 0417.45001, MR 0542283
Reference: [20] Tvrdý, M.: Regulated functions and the Perron-Stieltjes integral.Čas. Pěstování Mat. 114 (1989), 187-209. MR 1063765
.

Files

Files Size Format View
MathBohem_141-2016-2_9.pdf 355.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo