[1] Abbas, S., Benchohra, M., N’Guérékata, G. M.: 
Topics in Fractional Differential Equations.  Springer-Verlag, New York, 2012. 
MR 2962045 | 
Zbl 1273.35001 
[2] Abbas, S., Benchohra, M., N’Guérékata, G. M.: 
Advanced Fractional Differential and Integral Equations.  Nova Science Publishers, New York, 2015. 
MR 3309582 | 
Zbl 1314.34002 
[5] Ahmad, B., Ntouyas, S. K.: 
Initial value problems of fractional order Hadamard-type functional differential equations.  Electron. J. Differential Equations 2015, 77 (2015), 1–9. 
MR 3337854 | 
Zbl 1320.34109 
[6] Akhmerov, K. K., Kamenskii, M. I., Potapov, A. S., Rodkina, A. E., Sadovskii, B. N.: 
Measures of Noncompactness and Condensing Operators.  Birkhäuser Verlag, Basel, Boston, Berlin, 1992. 
MR 1153247 
[8] Baleanu, D., Güvenç, Z. B., Machado, J. A. T.: 
New Trends in Nanotechnologiy and Fractional Calculus Applications.  Springer, New York, 2010. 
MR 2605606 
[9] Banaś, J., Goebel, K.: 
Measures of Noncompactness in Banach Spaces.  Lecture Notes in Pure and Applied Mathematics 60, Marcel Dekker, New York, 1980. 
MR 0591679 
[10] Banaś, J., Olszowy, L.: 
Measures of noncompactness related to monotonicity.  Comment. Math. 41 (2001), 13–23. 
MR 1876707 | 
Zbl 0999.47041 
[11] Benchohra, M., Bouriah, S.: Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order. 
[12] Benchohra, M., Bouriah, S., Henderson, J.: 
Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses.  Comm. Appl. Nonlin. Anal. 22 (2015), 46–67. 
MR 3363687 | 
Zbl 1358.34088 
[15] Guo, D. J., Lakshmikantham, V., Liu, X.: 
Nonlinear Integral Equations in Abstract Spaces.  Kluwer Academic Publishers, Dordrecht, 1996. 
MR 1418859 | 
Zbl 0866.45004 
[16] Hadamard, J.: Essai sur l’étude des fonctions données par leur developpement de Taylor.  J. Math. Pure Appl. Ser. 8 (1892), 101–186.
[17] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: 
Theory and Applications of Fractional Differential Equations.  North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. 
MR 2218073 | 
Zbl 1092.45003 
[19] Lin, S.: 
Generalised Gronwall inequalities and their applications to fractional differential equations.  J. Ineq. Appl. 2013, 549 (2013), 1–9. 
MR 3212979 
[21] Nieto, J. J., Ouahab, A., Venktesh, V.: 
Implicit fractional differential equations via the Liouville–Caputo derivative.  Mathematics 3, 2 (2015), 398–411. 
DOI 10.3390/math3020398 | 
Zbl 1322.34012 
[24] Tarasov, V. E.: 
Fractional Dynamics: Application of Fractional Calculus to Dynamics of particles, Fields and Media.  Springer & Higher Education Press, Heidelberg & Beijing, 2010. 
MR 2796453