Previous |  Up |  Next

Article

Title: Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space (English)
Author: Benchohra, Mouffak
Author: Bouriah, Soufyane
Author: Lazreg, Jamal E.
Author: Nieto, Juan J.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 55
Issue: 1
Year: 2016
Pages: 15-26
Summary lang: English
.
Category: math
.
Summary: In this paper, we establish sufficient conditions for the existence of solutions for nonlinear Hadamard-type implicit fractional differential equations with finite delay. The proof of the main results is based on the measure of noncompactness and the Darbo’s and Mönch’s fixed point theorems. An example is included to show the applicability of our results. (English)
Keyword: Hadamard’s fractional derivative
Keyword: implicit fractional differential equations in Banach space
Keyword: fractional integral
Keyword: existence
Keyword: Gronwall’s lemma for singular kernels
Keyword: Measure of noncompactness
Keyword: fixed point
MSC: 26A33
MSC: 34A08
idZBL: Zbl 1362.34010
idMR: MR3674595
.
Date available: 2016-08-30T11:50:46Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145812
.
Reference: [1] Abbas, S., Benchohra, M., N’Guérékata, G. M.: Topics in Fractional Differential Equations.. Springer-Verlag, New York, 2012. Zbl 1273.35001, MR 2962045
Reference: [2] Abbas, S., Benchohra, M., N’Guérékata, G. M.: Advanced Fractional Differential and Integral Equations.. Nova Science Publishers, New York, 2015. Zbl 1314.34002, MR 3309582
Reference: [3] Agarwal, R. P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications.. Cambridge University Press, Cambridge, 2001. Zbl 0960.54027, MR 1825411, 10.1017/CBO9780511543005.008
Reference: [4] Ahmad, B., Ntouyas, S. K.: A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations.. Fract. Calc. Appl. Anal. 17 (2014), 348–360. Zbl 1312.34005, MR 3181059, 10.2478/s13540-014-0173-5
Reference: [5] Ahmad, B., Ntouyas, S. K.: Initial value problems of fractional order Hadamard-type functional differential equations.. Electron. J. Differential Equations 2015, 77 (2015), 1–9. Zbl 1320.34109, MR 3337854
Reference: [6] Akhmerov, K. K., Kamenskii, M. I., Potapov, A. S., Rodkina, A. E., Sadovskii, B. N.: Measures of Noncompactness and Condensing Operators.. Birkhäuser Verlag, Basel, Boston, Berlin, 1992. MR 1153247
Reference: [7] Appell, J.: Implicit functions, nonlinear integral equations, and the measure of noncompactness of the superposition operator.. J. Math. Anal. Appl. 83 (1981), 251–263. Zbl 0495.45007, MR 0632341, 10.1016/0022-247X(81)90261-4
Reference: [8] Baleanu, D., Güvenç, Z. B., Machado, J. A. T.: New Trends in Nanotechnologiy and Fractional Calculus Applications.. Springer, New York, 2010. MR 2605606
Reference: [9] Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces.. Lecture Notes in Pure and Applied Mathematics 60, Marcel Dekker, New York, 1980. MR 0591679
Reference: [10] Banaś, J., Olszowy, L.: Measures of noncompactness related to monotonicity.. Comment. Math. 41 (2001), 13–23. Zbl 0999.47041, MR 1876707
Reference: [11] Benchohra, M., Bouriah, S.: Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order.
Reference: [12] Benchohra, M., Bouriah, S., Henderson, J.: Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses.. Comm. Appl. Nonlin. Anal. 22 (2015), 46–67. Zbl 1358.34088, MR 3363687
Reference: [13] Butzer, P. L., Kilbas, A. A., Trujillo, J. J.: Compositions of Hadamard-type fractional integration operators and the semigroup property.. J. Math. Anal. Appl. 269 (2002), 387–400. Zbl 1027.26004, MR 1907120, 10.1016/S0022-247X(02)00049-5
Reference: [14] Granas, A., Dugundji, J.: Fixed Point Theory.. Springer-Verlag, New York, 2003. Zbl 1025.47002, MR 1987179, 10.1007/978-0-387-21593-8
Reference: [15] Guo, D. J., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces.. Kluwer Academic Publishers, Dordrecht, 1996. Zbl 0866.45004, MR 1418859
Reference: [16] Hadamard, J.: Essai sur l’étude des fonctions données par leur developpement de Taylor.. J. Math. Pure Appl. Ser. 8 (1892), 101–186.
Reference: [17] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations.. North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. Zbl 1092.45003, MR 2218073
Reference: [18] Kilbas, A. A., Trujillo, J. J.: Hadamard-type integrals as G-transforms.. Integral Transform. Spec. Funct. 14 (2003), 413–427. Zbl 1043.26004, MR 2005999, 10.1080/1065246031000074443
Reference: [19] Lin, S.: Generalised Gronwall inequalities and their applications to fractional differential equations.. J. Ineq. Appl. 2013, 549 (2013), 1–9. MR 3212979
Reference: [20] Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces.. Nonlinear Anal. 4 (1980), 985–999. MR 0586861, 10.1016/0362-546X(80)90010-3
Reference: [21] Nieto, J. J., Ouahab, A., Venktesh, V.: Implicit fractional differential equations via the Liouville–Caputo derivative.. Mathematics 3, 2 (2015), 398–411. Zbl 1322.34012, 10.3390/math3020398
Reference: [22] Podlubny, I.: Fractional Differential Equations.. Academic Press, San Diego, 1999. Zbl 0924.34008, MR 1658022
Reference: [23] Sun, S., Zhao, Y., Han, Z., Li, Y.: The existence of solutions for boundary value problem of fractional hybrid differential equations.. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4961–4967. Zbl 1352.34011, MR 2960290, 10.1016/j.cnsns.2012.06.001
Reference: [24] Tarasov, V. E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of particles, Fields and Media.. Springer & Higher Education Press, Heidelberg & Beijing, 2010. MR 2796453
Reference: [25] Yosida, K.: Functional Analysis.. 6th edn., Springer-Verlag, Berlin, 1980. Zbl 0435.46002, MR 0617913
Reference: [26] Zhao, Y., Sun, S., Han, Z., Li, Q.: Theory of fractional hybrid differential equations.. Comput. Math. Appl. 62 (2011), 1312–1324. Zbl 1228.45017, MR 2824718, 10.1016/j.camwa.2011.03.041
.

Files

Files Size Format View
ActaOlom_55-2016-1_3.pdf 319.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo