Title:
|
Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces (English) |
Author:
|
Argyros, I. K. |
Author:
|
González, D. |
Author:
|
Khattri, S. K. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
57 |
Issue:
|
3 |
Year:
|
2016 |
Pages:
|
289-300 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We present a local convergence analysis of a one parameter Jarratt-type method. We use this method to approximate a solution of an equation in a Banach space setting. The semilocal convergence of this method was recently carried out in earlier studies under stronger hypotheses. Numerical examples are given where earlier results such as in [Ezquerro J.A., Hernández M.A., {New iterations of $R$-order four with reduced computational cost}, BIT Numer. Math. {49} (2009), 325--342] cannot be used to solve equations but our results can be applied. (English) |
Keyword:
|
Banach space |
Keyword:
|
Newton's method |
Keyword:
|
local convergence |
Keyword:
|
radius of convergence |
MSC:
|
65D10 |
MSC:
|
65D99 |
idZBL:
|
Zbl 06674880 |
idMR:
|
MR3554510 |
DOI:
|
10.14712/1213-7243.2015.171 |
. |
Date available:
|
2016-09-22T15:21:35Z |
Last updated:
|
2018-10-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145834 |
. |
Reference:
|
[1] Amat S., Busquier S., Negra M.: Adaptive approximation of nonlinear operators.Numer. Funct. Anal. Optim. 25 (2004), 397–405. Zbl 1071.65077, MR 2106266, 10.1081/NFA-200042628 |
Reference:
|
[2] Argyros I.K.: Computational Theory of Iterative Methods.Studies in Computational Mathematics, 15, C.K. Chui and L. Wuytack (Eds.), Elsevier Publ. Co., New York, 2007. Zbl 1147.65313, MR 2356038 |
Reference:
|
[3] Argyros I.K.: A semilocal convergence analysis for directional Newton methods.Math. Comput. 80 (2011), 327–343. Zbl 1211.65057, MR 2728982, 10.1090/S0025-5718-2010-02398-1 |
Reference:
|
[4] Argyros I.K., Hilout S.: Weaker conditions for the convergence of Newton's method.J. Complexity 28 (2012), 364–387. Zbl 1245.65058, MR 2914733, 10.1016/j.jco.2011.12.003 |
Reference:
|
[5] Argyros I.K., Hilout S.: Estimating upper bounds on the limit points of majorizing sequences for Newton's method.Numer. Algorithms 62 (2013), 115–132. Zbl 1259.65080, MR 3009558, 10.1007/s11075-012-9570-1 |
Reference:
|
[6] Argyros I.K., Hilout S.: Computational methods in nonlinear analysis.Efficient algorithms, fixed point theory and applications, World Scientific, Hackensack, NJ, 2013. Zbl 1279.65062, MR 3134688 |
Reference:
|
[7] Candella V., Marquina A.: Recurrence relations for rational cubic methods II: the Chebyshev method.Computing 45 (1990), 355–367. MR 1088077, 10.1007/BF02238803 |
Reference:
|
[8] Candella V., Marquina A.: Recurrence relations for rational cubic methods I: the Halley method.Computing 44 (1990), 169–184. MR 1053497, 10.1007/BF02241866 |
Reference:
|
[9] Cătinaş E.: The inexact, inexact perturbed, and quasi-Newton methods are equivalent models.Math. Comp. 74 (2005), 291–301. Zbl 1054.65050, MR 2085412, 10.1090/S0025-5718-04-01646-1 |
Reference:
|
[10] Chun C., Stănică P., Neta B.: Third-order family of methods in Banach spaces.Comput. Math. Appl. 61 (2011), 1665–1675. Zbl 1217.65101, MR 2775931, 10.1016/j.camwa.2011.01.034 |
Reference:
|
[11] Ezquerro J.A., Hernández M.A.: New iterations of $R$-order four with reduced computational cost.BIT Numer. Math. 49 (2009), 325–342. Zbl 1170.65038, MR 2507604, 10.1007/s10543-009-0226-z |
Reference:
|
[12] Gutiérrez J.M., Hernández M.A.: Third-order iterative methods for operators with bounded second derivative.J. Comput. Math. Appl. 82 (1997), 171–183. Zbl 0891.65064, 10.1016/S0377-0427(97)00076-9 |
Reference:
|
[13] Hernández M.A., Salanova M.A.: Sufficient condition for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces.Southwest J. Pure Appl. Math. 1999, no. 1, 29–40. MR 1717585 |
Reference:
|
[14] Jarratt P.: Some fourth order multipoint iterative methods for solving equations.Math. Comput. 20 (1996), 434–437. Zbl 0229.65049, 10.1090/S0025-5718-66-99924-8 |
Reference:
|
[15] Kantorovich L.V., Akilov G.P.: Functional Analysis.Pergamon Press, Oxford, 1982. Zbl 0555.46001, MR 0664597 |
Reference:
|
[16] Kou J.-S., Li Y.-T., Wang X.-H.: A modification of Newton method with third-order convergence.Appl. Math. Comput. 181 (2006), 1106–1111. MR 2269989, 10.1016/j.amc.2006.01.076 |
Reference:
|
[17] Ortega L.M., Rheinboldt W.C.: Iterative Solution of Nonlinear Equations in Several Variables.Academic Press, New York, 1970. Zbl 0949.65053, MR 0273810 |
Reference:
|
[18] Parida P.K., Gupta D.K.: Recurrence relations for a Newton-like method in Banach spaces.J. Comput. Appl. Math. 206 (2007), 873–887. Zbl 1119.47063, MR 2333719, 10.1016/j.cam.2006.08.027 |
Reference:
|
[19] Potra F.A., Pták V.: Nondiscrete Induction and Iterative Processes.Research Notes in Mathematics, 103, Pitman, Boston, 1984. Zbl 0549.41001, MR 0754338 |
Reference:
|
[20] Proinov P.D.: General local convergence theory for a class of iterative processes and its applications to Newton's method.J. Complexity 25 (2009), 38–62. Zbl 1158.65040, MR 2475307, 10.1016/j.jco.2008.05.006 |
Reference:
|
[21] Rheinboldt W.C.: An adaptive continuation process for solving systems of nonlinear equations.Banach Center Publ., 3, PWN, Warsaw, 1978, pp. 129–142. Zbl 0378.65029, MR 0514377, 10.4064/-3-1-129-142 |
Reference:
|
[22] Traub J.F.: Iterative Methods for the Solution of Equations.AMS Chelsea Publishing, 1982. Zbl 0672.65025 |
. |