Previous |  Up |  Next

Article

Title: Line graphs: their maximum nullities and zero forcing numbers (English)
Author: Fallat, Shaun
Author: Soltani, Abolghasem
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 743-755
Summary lang: English
.
Category: math
.
Summary: The maximum nullity over a collection of matrices associated with a graph has been attracting the attention of numerous researchers for at least three decades. Along these lines various zero forcing parameters have been devised and utilized for bounding the maximum nullity. The maximum nullity and zero forcing number, and their positive counterparts, for general families of line graphs associated with graphs possessing a variety of specific properties are analysed. Building upon earlier work, where connections to the minimum rank of line graphs were established, we verify analogous equations in the positive semidefinite cases and coincidences with the corresponding zero forcing numbers. Working beyond the case of trees, we study the zero forcing number of line graphs associated with certain families of unicyclic graphs. (English)
Keyword: maximum nullity
Keyword: zero forcing number
Keyword: positive zero forcing number
Keyword: line graphs
Keyword: matrix
Keyword: tree
Keyword: positive semidefinite matrix
Keyword: unicyclic graph
MSC: 05C50
MSC: 15A03
MSC: 15A18
idZBL: Zbl 06644031
idMR: MR3556865
DOI: 10.1007/s10587-016-0290-x
.
Date available: 2016-10-01T15:21:28Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145869
.
Reference: [1] Group, AIM Minimum Rank -- Special Graphs Work: Zero forcing sets and the minimum rank of graphs.Linear Algebra Appl. 428 (2008), 1628-1648. MR 2388646
Reference: [2] Alinaghipour, F.: Zero Forcing Set for Graphs.PhD Dissertation, University of Regina (2013). MR 4272166
Reference: [3] Barioli, F., Barrett, W., Fallat, S., Hall, H. T., Hogben, L., Shader, B., Driessche, P. van den, Holst, H. van der: Zero forcing parameters and minimum rank problems.Linear Algebra Appl. 433 (2010), 401-411. MR 2645093
Reference: [4] Barioli, F., Fallat, S., Hogben, L.: On the difference between the maximum multiplicity and path cover number for tree-like graphs.Linear Algebra Appl. 409 (2005), 13-31. Zbl 1072.05037, MR 2169544
Reference: [5] M. Booth, P. Hackney, B. Harris, C. R. Johnson, M. Lay, L. H. Mitchell, S. K. Narayan, A. Pascoe, K. Steinmetz, B. D. Sutton, W. Wang: On the minimum rank among positive semidefinite matrices with a given graph.SIAM J. Matrix Anal. Appl. 30 (2008), 731-740. MR 2421468, 10.1137/050629793
Reference: [6] Edholm, C. J., Hogben, L., Huynh, M., LaGrange, J., Row, D. D.: Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph.Linear Algebra Appl. 436 (2012), 4352-4372. Zbl 1241.05076, MR 2917414
Reference: [7] J. Ekstrand, C. Erickson, H. T. Hall, D. Hay, L. Hogben, R. Johnson, N. Kingsley, S. Osborne, T. Peters, J. Roat, A. Ross, D. D. Row, N. Warnberg, M. Young: Positive semidefinite zero forcing.Linear Algebra Appl. 439 (2013), 1862-1874. MR 3090441
Reference: [8] Ekstrand, J., Erickson, C., Hay, D., Hogben, L., Roat, J.: Note on positive semidefinite maximum nullity and positive semidefinite zero forcing number of partial $2$-trees.Electron. J. Linear Algebra. (electronic only) 23 (2012), 79-87. Zbl 1252.05118, MR 2889573
Reference: [9] Eroh, L., Kang, C. X., Yi, E.: A Comparison between the Metric Dimension and Zero Forcing Number of Line Graphs.(2012), 14 pages arXiv:1207.6127v1 [math.CO]. MR 3027310
Reference: [10] Fallat, S. M., Hogben, L.: Chapter 46: Minimum rank, maximum nullity, and zero forcing number of graphs.Handbook of Linear Algebra L. Hogben CRC Press, Boca Raton (2014), 46-1-46-36. MR 3141806
Reference: [11] Fallat, S., Hogben, L.: The minimum rank of symmetric matrices described by a graph: a survey.Linear Algebra Appl. 426 (2007), 558-582. Zbl 1122.05057, MR 2350678
Reference: [12] Nylen, P. M.: Minimum-rank matrices with prescribed graph.Linear Algebra Appl. 248 (1996), 303-316. Zbl 0864.05069, MR 1416462
Reference: [13] Owens, K.: Properties of the Zero Forcing Number.Master's Thesis, Brigham Young University (2009).
Reference: [14] Peters, T.: Positive semidefinite maximum nullity and zero forcing number.Electron. J. Linear Algebra (electronic only) 23 (2012), 815-830. Zbl 1252.05130, MR 2992396
Reference: [15] Row, D. D.: A technique for computing the zero forcing number of a graph with a cut-vertex.Linear Algebra Appl. 436 (2012), 4423-4432. Zbl 1241.05086, MR 2917419
Reference: [16] Yu, X.: Cyclomatic numbers of connected induced subgraphs.Discrete Math. 105 (1992), 275-284. Zbl 0783.05065, MR 1180211, 10.1016/0012-365X(92)90150-E
.

Files

Files Size Format View
CzechMathJ_66-2016-3_15.pdf 236.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo