[1] Group, AIM Minimum Rank -- Special Graphs Work: 
Zero forcing sets and the minimum rank of graphs. Linear Algebra Appl. 428 (2008), 1628-1648. 
MR 2388646 
[2] Alinaghipour, F.: 
Zero Forcing Set for Graphs. PhD Dissertation, University of Regina (2013). 
MR 4272166 
[3] Barioli, F., Barrett, W., Fallat, S., Hall, H. T., Hogben, L., Shader, B., Driessche, P. van den, Holst, H. van der: 
Zero forcing parameters and minimum rank problems. Linear Algebra Appl. 433 (2010), 401-411. 
MR 2645093 
[4] Barioli, F., Fallat, S., Hogben, L.: 
On the difference between the maximum multiplicity and path cover number for tree-like graphs. Linear Algebra Appl. 409 (2005), 13-31. 
MR 2169544 | 
Zbl 1072.05037 
[5] M. Booth, P. Hackney, B. Harris, C. R. Johnson, M. Lay, L. H. Mitchell, S. K. Narayan, A. Pascoe, K. Steinmetz, B. D. Sutton, W. Wang: 
On the minimum rank among positive semidefinite matrices with a given graph. SIAM J. Matrix Anal. Appl. 30 (2008), 731-740. 
DOI 10.1137/050629793 | 
MR 2421468 
[6] Edholm, C. J., Hogben, L., Huynh, M., LaGrange, J., Row, D. D.: 
Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph. Linear Algebra Appl. 436 (2012), 4352-4372. 
MR 2917414 | 
Zbl 1241.05076 
[7] J. Ekstrand, C. Erickson, H. T. Hall, D. Hay, L. Hogben, R. Johnson, N. Kingsley, S. Osborne, T. Peters, J. Roat, A. Ross, D. D. Row, N. Warnberg, M. Young: 
Positive semidefinite zero forcing. Linear Algebra Appl. 439 (2013), 1862-1874. 
MR 3090441 
[8] Ekstrand, J., Erickson, C., Hay, D., Hogben, L., Roat, J.: 
Note on positive semidefinite maximum nullity and positive semidefinite zero forcing number of partial $2$-trees. Electron. J. Linear Algebra. (electronic only) 23 (2012), 79-87. 
MR 2889573 | 
Zbl 1252.05118 
[9] Eroh, L., Kang, C. X., Yi, E.: 
A Comparison between the Metric Dimension and Zero Forcing Number of Line Graphs. (2012), 14 pages arXiv:1207.6127v1 [math.CO]. 
MR 3027310 
[10] Fallat, S. M., Hogben, L.: 
Chapter 46: Minimum rank, maximum nullity, and zero forcing number of graphs. Handbook of Linear Algebra L. Hogben CRC Press, Boca Raton (2014), 46-1-46-36. 
MR 3141806 
[11] Fallat, S., Hogben, L.: 
The minimum rank of symmetric matrices described by a graph: a survey. Linear Algebra Appl. 426 (2007), 558-582. 
MR 2350678 | 
Zbl 1122.05057 
[12] Nylen, P. M.: 
Minimum-rank matrices with prescribed graph. Linear Algebra Appl. 248 (1996), 303-316. 
MR 1416462 | 
Zbl 0864.05069 
[13] Owens, K.: Properties of the Zero Forcing Number. Master's Thesis, Brigham Young University (2009).
[14] Peters, T.: 
Positive semidefinite maximum nullity and zero forcing number. Electron. J. Linear Algebra (electronic only) 23 (2012), 815-830. 
MR 2992396 | 
Zbl 1252.05130 
[15] Row, D. D.: 
A technique for computing the zero forcing number of a graph with a cut-vertex. Linear Algebra Appl. 436 (2012), 4423-4432. 
MR 2917419 | 
Zbl 1241.05086