Previous |  Up |  Next

Article

Title: Linear preservers of row-dense matrices (English)
Author: Motlaghian, Sara M.
Author: Armandnejad, Ali
Author: Hall, Frank J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 847-858
Summary lang: English
.
Category: math
.
Summary: Let $\mathbf {M}_{m,n}$ be the set of all $m\times n$ real matrices. A matrix $A\in \mathbf {M}_{m,n}$ is said to be row-dense if there are no zeros between two nonzero entries for every row of this matrix. We find the structure of linear functions $T\colon \mathbf {M}_{m,n} \rightarrow \mathbf {M}_{m,n}$ that preserve or strongly preserve row-dense matrices, i.e., $T(A)$ is row-dense whenever $A$ is row-dense or $T(A)$ is row-dense if and only if $A$ is row-dense, respectively. Similarly, a matrix $A\in \mathbf {M}_{n,m}$ is called a column-dense matrix if every column of $A$ is a column-dense vector. At the end, the structure of linear preservers (strong linear preservers) of column-dense matrices is found. (English)
Keyword: row-dense matrix
Keyword: linear preserver
Keyword: strong linear preserver
MSC: 15A04
MSC: 15A21
idZBL: Zbl 06644037
idMR: MR3556871
DOI: 10.1007/s10587-016-0296-4
.
Date available: 2016-10-01T15:27:46Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145875
.
Reference: [1] Fiedler, M., Hall, F. J., Stroev, M.: Dense alternating sign matrices and extensions.Linear Algebra Appl. 444 (2014), 219-226. Zbl 1286.15041, MR 3145840
Reference: [2] Frobenius, G.: Über die Darstellung der endlichen Gruppen durch Linear Substitutionen.Berl. Ber. 1897 (1897), German 994-1015.
Reference: [3] Nadoshan, M. A. Hadian, Armandnejad, A.: $B$-majorization and its linear preservers.Linear Algebra Appl. 478 (2015), 218-227. MR 3342422
Reference: [4] Hogben, L.: Handbook of Linear Algebra.Discrete Mathematics and Its Applications Chapman & Hall/CRC Press, Boca Raton (2014). Zbl 1284.15001, MR 3013937
Reference: [5] Li, C.-K., Pierce, S.: Linear preserver problems.Am. Math. Mon. 108 (2001), 591-605. Zbl 0991.15001, MR 1862098, 10.2307/2695268
Reference: [6] Pierce, S., Lim, M. H., Lowey, R., Li, Ch.-K., Tsing, N.-K., McDonald, B. R., Basley, L.: A survey of linear preserver problems.Linear Multilinear Algebra 33 (1992), 1-129. 10.1080/03081089208818176
Reference: [7] Soleymani, M., Armandnejad, A.: Linear preservers of even majorization on $M_{n,m}$.Linear Multilinear Algebra 62 (2014), 1437-1449. Zbl 1309.15045, MR 3261749, 10.1080/03081087.2013.832487
.

Files

Files Size Format View
CzechMathJ_66-2016-3_21.pdf 213.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo