Title:
|
Linear preservers of row-dense matrices (English) |
Author:
|
Motlaghian, Sara M. |
Author:
|
Armandnejad, Ali |
Author:
|
Hall, Frank J. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
3 |
Year:
|
2016 |
Pages:
|
847-858 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathbf {M}_{m,n}$ be the set of all $m\times n$ real matrices. A matrix $A\in \mathbf {M}_{m,n}$ is said to be row-dense if there are no zeros between two nonzero entries for every row of this matrix. We find the structure of linear functions $T\colon \mathbf {M}_{m,n} \rightarrow \mathbf {M}_{m,n}$ that preserve or strongly preserve row-dense matrices, i.e., $T(A)$ is row-dense whenever $A$ is row-dense or $T(A)$ is row-dense if and only if $A$ is row-dense, respectively. Similarly, a matrix $A\in \mathbf {M}_{n,m}$ is called a column-dense matrix if every column of $A$ is a column-dense vector. At the end, the structure of linear preservers (strong linear preservers) of column-dense matrices is found. (English) |
Keyword:
|
row-dense matrix |
Keyword:
|
linear preserver |
Keyword:
|
strong linear preserver |
MSC:
|
15A04 |
MSC:
|
15A21 |
idZBL:
|
Zbl 06644037 |
idMR:
|
MR3556871 |
DOI:
|
10.1007/s10587-016-0296-4 |
. |
Date available:
|
2016-10-01T15:27:46Z |
Last updated:
|
2023-10-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145875 |
. |
Reference:
|
[1] Fiedler, M., Hall, F. J., Stroev, M.: Dense alternating sign matrices and extensions.Linear Algebra Appl. 444 (2014), 219-226. Zbl 1286.15041, MR 3145840 |
Reference:
|
[2] Frobenius, G.: Über die Darstellung der endlichen Gruppen durch Linear Substitutionen.Berl. Ber. 1897 (1897), German 994-1015. |
Reference:
|
[3] Nadoshan, M. A. Hadian, Armandnejad, A.: $B$-majorization and its linear preservers.Linear Algebra Appl. 478 (2015), 218-227. MR 3342422 |
Reference:
|
[4] Hogben, L.: Handbook of Linear Algebra.Discrete Mathematics and Its Applications Chapman & Hall/CRC Press, Boca Raton (2014). Zbl 1284.15001, MR 3013937 |
Reference:
|
[5] Li, C.-K., Pierce, S.: Linear preserver problems.Am. Math. Mon. 108 (2001), 591-605. Zbl 0991.15001, MR 1862098, 10.2307/2695268 |
Reference:
|
[6] Pierce, S., Lim, M. H., Lowey, R., Li, Ch.-K., Tsing, N.-K., McDonald, B. R., Basley, L.: A survey of linear preserver problems.Linear Multilinear Algebra 33 (1992), 1-129. 10.1080/03081089208818176 |
Reference:
|
[7] Soleymani, M., Armandnejad, A.: Linear preservers of even majorization on $M_{n,m}$.Linear Multilinear Algebra 62 (2014), 1437-1449. Zbl 1309.15045, MR 3261749, 10.1080/03081087.2013.832487 |
. |