Previous |  Up |  Next

Article

Title: Steiner forms (English)
Author: Hora, Jan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 4
Year: 2016
Pages: 527-536
Summary lang: English
.
Category: math
.
Summary: A trilinear alternating form on dimension $n$ can be defined based on a Steiner triple system of order $n$. We prove some basic properties of these forms and using the radical polynomial we show that for dimensions up to $15$ nonisomorphic Steiner triple systems provide nonequivalent forms over $GF(2)$. Finally, we prove that Steiner triple systems of order $n$ with different number of subsystems of order $(n-1)/2$ yield nonequivalent forms over $GF(2)$. (English)
Keyword: trilinear alternating form
Keyword: Steiner triple system
Keyword: radical polynomial
MSC: 15A69
idZBL: Zbl 06674894
idMR: MR3583304
DOI: 10.14712/1213-7243.2015.182
.
Date available: 2017-01-09T22:17:39Z
Last updated: 2019-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145947
.
Reference: [1] Cohen A.M., Helminck A.G.: Trilinear alternating forms on a vector space of dimension $7$.Comm. Algebra 16 (1988), no. 1, 1–25. Zbl 0646.15019, MR 0921939, 10.1080/00927878808823558
Reference: [2] Gurevich G.B.: Foundations of the Theory of Algebraic Invariants.P. Noordhoff Ltd., Groningen, 1964. Zbl 0128.24601, MR 0183733
Reference: [3] Djokovic D.: Classification of trivectors of an eight dimensional real vector space.Linear Multilinear Algebra 13 (1983), no. 3, 3–39. Zbl 0515.15011, MR 0691457, 10.1080/03081088308817501
Reference: [4] Noui L.: Transvecteur de rang $8$ sur un corps algébriquement clos.C.R. Acad. Sci. Paris Sér. I Math. 324 (1997), 611–614. Zbl 0872.15023, MR 1447029, 10.1016/S0764-4442(97)86976-5
Reference: [5] Colbourn C.J., Rosa A.: Triple Systems.Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl 1030.05017, MR 1843379
Reference: [6] Hora J.: Orthogonal decompositions and canonical embeddings of multilinear alternating forms.Linear Multilinear Algebra 52 (2004), no. 2, 121–132. Zbl 1049.15022, MR 2033133, 10.1080/03081080310001606517
Reference: [7] Hora J., Pudlák P.: Classification of $8$-dimensional trilinear alternating forms over $GF(2)$.Comm. Algebra 43 (2015), no. 8, 3459–3471. MR 3354103
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-4_6.pdf 259.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo