Previous |  Up |  Next

Article

Keywords:
trilinear alternating form; Steiner triple system; radical polynomial
Summary:
A trilinear alternating form on dimension $n$ can be defined based on a Steiner triple system of order $n$. We prove some basic properties of these forms and using the radical polynomial we show that for dimensions up to $15$ nonisomorphic Steiner triple systems provide nonequivalent forms over $GF(2)$. Finally, we prove that Steiner triple systems of order $n$ with different number of subsystems of order $(n-1)/2$ yield nonequivalent forms over $GF(2)$.
References:
[1] Cohen A.M., Helminck A.G.: Trilinear alternating forms on a vector space of dimension $7$. Comm. Algebra 16 (1988), no. 1, 1–25. DOI 10.1080/00927878808823558 | MR 0921939 | Zbl 0646.15019
[2] Gurevich G.B.: Foundations of the Theory of Algebraic Invariants. P. Noordhoff Ltd., Groningen, 1964. MR 0183733 | Zbl 0128.24601
[3] Djokovic D.: Classification of trivectors of an eight dimensional real vector space. Linear Multilinear Algebra 13 (1983), no. 3, 3–39. DOI 10.1080/03081088308817501 | MR 0691457 | Zbl 0515.15011
[4] Noui L.: Transvecteur de rang $8$ sur un corps algébriquement clos. C.R. Acad. Sci. Paris Sér. I Math. 324 (1997), 611–614. DOI 10.1016/S0764-4442(97)86976-5 | MR 1447029 | Zbl 0872.15023
[5] Colbourn C.J., Rosa A.: Triple Systems. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. MR 1843379 | Zbl 1030.05017
[6] Hora J.: Orthogonal decompositions and canonical embeddings of multilinear alternating forms. Linear Multilinear Algebra 52 (2004), no. 2, 121–132. DOI 10.1080/03081080310001606517 | MR 2033133 | Zbl 1049.15022
[7] Hora J., Pudlák P.: Classification of $8$-dimensional trilinear alternating forms over $GF(2)$. Comm. Algebra 43 (2015), no. 8, 3459–3471. MR 3354103
Partner of
EuDML logo