Previous |  Up |  Next

Article

Keywords:
perfect observer; $h$-difference fractional operator; linear control system; singular system
Summary:
A perfect (exact) fractional observer of discrete-time singular linear control system of fractional order is studied. Conditions for its existence are given. The obtained results are applied to the detectability problem of the class of systems under consideration.
References:
[1] Abdeljawad, T., Baleanu, D.: Fractional differences and integration by parts. J. Comput. Analysis Appl. 13 (2011), 3, 574-582. MR 2752428 | Zbl 1225.39008
[2] Atici, F. M., Eloe, P. W.: A transform method in discrete fractional calculus. Int. J. Difference Equations 2 (2007), 165-176. MR 2493595
[3] Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M.: Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29 (2011), 2, 417-437. DOI 10.3934/dcds.2011.29.417 | Zbl 1209.49020
[4] Dai, L.: Observers for discrete singular systems. IEEE Trans. Automat. Control 33 (1988), 2, 187-191. DOI 10.1109/9.387 | MR 0922795 | Zbl 0633.93025
[5] Darouach, M., Boutat-Baddas, L.: Observers for a class of nonlinear singular systems. IEEE Trans. Automat. Control 53 (2008), 11, 2627-2633. DOI 10.1109/tac.2008.2007868 | MR 2474831
[6] Duarte-Mermoud, M. A., Mira, M. J., Pelissier, I. S., Travieso-Torres, J. C.: Evaluation of a fractional order PI controller applied to induction moror speed control. In: Proc. 8th IEEE Int. Conf. on Control and Automation, Xiamen 2010, pp. 573-577. DOI 10.1109/icca.2010.5524496
[7] Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58 (2010), 4, 583-59. DOI 10.2478/v10175-010-0059-6 | Zbl 1220.80006
[8] Ferreira, R. A. C., Torres, D. F. M.: Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5 (2011), 1, 110-121. DOI 10.2298/aadm110131002f | MR 2809039 | Zbl 1289.39007
[9] Fiacchini, M., Millerioux, G.: Deat-beat functional observers for discrete-time LVP systems with unknown inputs. IEEE Trans. Automat. Control 58 (2013), 12, 3230-3235. DOI 10.1109/tac.2013.2261712
[10] Girejko, E., Mozyrska, D., Wyrwas, M.: Advances in the theory and applications of non-integer order systems. In: Comparison of $h$-difference fractional operators (W. Mitkowski, J. Kacprzyk, and J. Baranowski, eds.), Springer 257 (2013), pp. 191-197. DOI 10.1007/978-3-319-00933-9_17
[11] Isidori, A.: Nonlinear Control Theory. Springer, 1991. Zbl 0672.00015
[12] Kaczorek, T.: Full-order perfect observers for continuous-time linear systems. Pomiary, Automatyka, Kontrola 1 (2001), 3-6. Zbl 1007.93008
[13] Kaczorek, T.: Advances in Modelling and control of non-integer-order systems. In: Perfect Observers of Fractional Descriptor Continuous-Time Linear System (K. J. Latawiec, M. Lukaniszyn and R. Stanislawski, eds.), Lecture Notes in Electrical Engineering, Springer International Publishing 320 (2015), pp. 3-12. DOI 10.1007/978-3-319-09900-2_1
[14] Miller, K. S., B, Ross: Fractional difference calculus. In: Proc. Int. Symp. on Univalent Functions, Fractional Calculus and their Applications, Nihon University, K\=oriyama 1988, pp. 139-152. MR 1199147
[15] Mozyrska, D., Girejko, E.: Advances in Harmonic Analysis and Operator Theory: The Stefan Samko Anniversary. In: Overview of the fractional h-difference operators, Springer 229 (2013), pp. 253-267. DOI 10.1007/978-3-0348-0516-2_14 | MR 3060418
[16] Mozyrska, D., Pawluszewicz, E., Wyrwas, M.: Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearization. Int. J. Syst. Sci. 48 (2017), 4, 788-794. DOI 10.1080/00207721.2016.1216197 | MR 3566271
[17] Mozyrska, D., Wyrwas, M.: The $\mathcal{Z}$-transform method and delta-type fractional difference operators. Discrete Dynamics in Nature and Society 2015, pp. 47-58. DOI 10.1007/978-3-319-09900-2_5 | MR 3321587
[18] Mozyrska, D., Wyrwas, M., Pawluszewicz, E.: Stabilization of linear multi-parameter fractional difference control systems. In: Proc. 20th Int. Conf. on Methods and Models in Automation and Robotics MMAR'2015, Miedzyzdroje 2915, pp. 315-319. DOI 10.1109/mmar.2015.7283894
[19] N'Doye, I., Darouach, M., Zasadzinski, M., Radhy, N.-E.: Observers design for singular fractional-order system. In: Proc. 50th Int. Conf. on Decision and Control and European Control Conference CDC-ECC'2011, Orlando 2011, pp. 4017-4022. DOI 10.1109/cdc.2011.6161336
[20] Slawinski, M., Kaczorek, T.: Perfect observers for continuous time linear systems. Pomiary, Automatyka, Kontrola 1 (2004), 39-44.
[21] Sontag, E. D.: Mathematical Control Theory. Springer 1998. DOI 10.1007/978-1-4612-0577-7 | MR 1640001 | Zbl 0945.93001
[22] Trigeassou, J. C., Poinot, T., Lin, J., Oustaloup, A., Levron, F.: Modelling and identification of a non integer order system. In: Proc. European Control Conference ECC'1999, Karlsruhe 1999, pp. 2453-2458.
[23] Wolowich, W. A.: Linear Multivariable Systems. Springer-Verlag, 1974. DOI 10.1007/978-1-4612-6392-0 | MR 0359881
[24] Wyrwas, M., Pawluszewicz, E., Girejko, E.: Stability of nonlinear $h$- difference systems with $n$ fractional orders. Kybernetika 51 (2015), 1, 112-136. DOI 10.14736/kyb-2015-1-0112 | MR 3333836 | Zbl 1340.39029
Partner of
EuDML logo