Previous |  Up |  Next

Article

Title: Some fixed point theorems in logarithmic convex structures (English)
Author: Moazzen, Alireza
Author: Cho, Yoel-Je
Author: Park, Choonkil
Author: Eshaghi Gordji, Madjid
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 1
Year: 2017
Pages: 1-7
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce the concept of a logarithmic convex structure. Let $X$ be a set and $D\colon X\times X\rightarrow [1,\infty )$ a function satisfying the following conditions: \item {(i)} For all $x,y\in X$, $ D(x,y)\geq 1$ and $D(x,y)=1$ if and only if $x=y$. \item {(ii)} For all $x,y\in X$, $D(x,y)=D(y,x)$. \item {(iii)} For all $ x,y,z\in X$, $D(x,y)\leq D(x,z)D(z,y)$. \item {(iv)} For all $x,y,z\in X$, $z\neq x,y$ and $\lambda \in (0,1)$, \begin {gather} D(z,W(x,y,\lambda ))\leq D^\lambda (x,z)D^{1-\lambda }(y,z),\nonumber \\ D(x,y)= D(x,W(x,y,\lambda ))D(y,W(x,y,\lambda )),\nonumber \end {gather} where $W\colon X\times X\times [0,1]\rightarrow X$ is a continuous mapping. We name this the logarithmic convex structure. In this work we prove some fixed point theorems in the logarithmic convex structure. (English)
Keyword: fixed point
Keyword: logarithmic convex structure
Keyword: convex metric space
MSC: 47H09
MSC: 47H10
MSC: 54H25
idZBL: Zbl 06738565
idMR: MR3619982
DOI: 10.21136/MB.2017.0074-14
.
Date available: 2017-02-21T17:19:04Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146002
.
Reference: [1] Chang, S. S., Cho, Y. J., Kang, S. M.: Nonlinear Operator Theory in Probabilistic Metric Spaces.Nova Science Publishers Huntington (2001). Zbl 1080.47054, MR 2018691
Reference: [2] 'Cirić, L. B.: On some discontinuous fixed point mappings in convex metric spaces.Czech. Math. J. 43 (1993), 319-326. Zbl 0814.47065, MR 1211753
Reference: [3] Guay, M. D., Singh, K. L., Whitfieled, J. H. M.: Fixed point theorems for nonexpansive mappings in convex metric spaces.Nonlinear Analysis and Applications. Proc. Int. Conf. at Memorial University of Newfoundland, 1981 S. P. Singh at al. Lect. Notes Pure Appl. Math. 80, Marcel Dekker, New York (1982), 179-189. Zbl 0501.54030, MR 0689554
Reference: [4] Machado, H. V.: A characterization of convex subsets of normed spaces.Kōdai Math. Semin. Rep. 25 (1973), 307-320. Zbl 0271.54021, MR 0326359, 10.2996/kmj/1138846819
Reference: [5] Shimizu, T., Takahashi, W.: Fixed point theorems in certain convex metric spaces.Math. Jap. 37 (1992), 855-859. Zbl 0764.47030, MR 1186552
Reference: [6] Takahashi, W.: A convexity in metric spaces and nonexpansive mapping I.Kōdai Math. Semin. Rep. 22 (1970), 142-149. Zbl 0268.54048, MR 0267565, 10.2996/kmj/1138846111
Reference: [7] Talman, L. A.: Fixed points for condensing multifunctions in metric spaces with convex structure.Kōdai Math. Semin. Rep. 29 (1977), 62-70. Zbl 0423.54039, MR 0463985, 10.2996/kmj/1138833572
.

Files

Files Size Format View
MathBohem_142-2017-1_1.pdf 248.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo