Previous |  Up |  Next

Article

Title: Relative Gorenstein injective covers with respect to a semidualizing module (English)
Author: Tavasoli, Elham
Author: Salimi, Maryam
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 87-95
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative Noetherian ring and let $C$ be a semidualizing $R$-module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to $C$ which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every $G_{C}$-injective module $G$, the character module $G^{+}$ is $G_{C}$-flat, then the class $\mathcal {GI}_{C}(R)\cap \mathcal {A}_{C}(R)$ is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class $\mathcal {GI}_{C}(R)\cap \mathcal {A}_{C}(R)$ is covering. (English)
Keyword: semidualizing module
Keyword: $G_{C}$-flat module
Keyword: $G _{C}$-injective module
Keyword: cover
Keyword: envelope
MSC: 13D05
MSC: 13D45
MSC: 18G20
idZBL: Zbl 06738506
idMR: MR3633000
DOI: 10.21136/CMJ.2017.0379-15
.
Date available: 2017-03-13T12:06:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146042
.
Reference: [1] Auslander, M., Bridger, M.: Stable Module Theory.Memoirs of the American Mathematical Society 94 American Mathematical Society, Providence (1969). Zbl 0204.36402, MR 0269685, 10.1090/memo/0094
Reference: [2] Avramov, L. L., Foxby, H. B.: Ring homomorphisms and finite Gorenstein dimension.Proc. Lond. Math. Soc., III. Ser. 75 (1997), 241-270. Zbl 0901.13011, MR 1455856, 10.1112/S0024611597000348
Reference: [3] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories.Trans. Am. Math. Soc. 353 (2001), 1839-1883. Zbl 0969.13006, MR 1813596, 10.1090/S0002-9947-01-02627-7
Reference: [4] Enochs, E. E., Holm, H.: Cotorsion pairs associated with Auslander categories.Isr. J. Math. 174 253-268 (2009). Zbl 1184.13029, MR 2581218, 10.1007/s11856-009-0113-y
Reference: [5] Enochs, E. E., Iacob, A.: Gorenstein injective covers and envelopes over Noetherian rings.Proc. Am. Math. Soc. 143 (2015), 5-12. Zbl 1307.18013, MR 3272726, 10.1090/S0002-9939-2014-12232-5
Reference: [6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics 30 Walter de Gruyter, Berlin (2000). Zbl 1238.13001, MR 2857612, 10.1515/9783110215212
Reference: [7] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: The existence of Gorenstein flat covers.Math. Scand. 94 (2004), 46-62. Zbl 1061.16003, MR 2032335, 10.7146/math.scand.a-14429
Reference: [8] Enochs, E. E., López-Ramos, J. A.: Kaplansky classes.Rend. Semin. Math. Univ. Padova 107 (2002), 67-79. Zbl 1099.13019, MR 1926201
Reference: [9] Foxby, H. B.: Gorenstein modules and related modules.Math. Scand. 31 (1972), 267-284. Zbl 0272.13009, MR 0327752, 10.7146/math.scand.a-11434
Reference: [10] Golod, E. S.: G-dimension and generalized perfect ideals.Tr. Mat. Inst. Steklova 165 (1984), Russian 62-66. Zbl 0577.13008, MR 0752933
Reference: [11] Hashimoto, M.: Auslander-Buchweitz Approximations of Equivariant Modules.London Mathematical Society Lecture Note Series 282 Cambridge University Press, Cambridge (2000). Zbl 0993.13007, MR 1797672, 10.1017/CBO9780511565762
Reference: [12] Holm, H.: Gorenstein homological dimensions.J. Pure Appl. Algebra 189 (2004), 167-193. Zbl 1050.16003, MR 2038564, 10.1016/j.jpaa.2003.11.007
Reference: [13] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimension.J. Pure Appl. Algebra 205 (2006), 423-445. Zbl 1094.13021, MR 2203625, 10.1016/j.jpaa.2005.07.010
Reference: [14] Holm, H., Jørgensen, P.: Cotorsion pairs induced by duality pairs.J. Commut. Algebra 1 (2009), 621-633. Zbl 1184.13042, MR 2575834, 10.1216/JCA-2009-1-4-621
Reference: [15] Krause, H.: The stable derived category of a noetherian scheme.Compos. Math. 141 (2005), 1128-1162. Zbl 1090.18006, MR 2157133, 10.1112/S0010437X05001375
Reference: [16] Nagata, M.: Local Rings.Interscience Tracts in Pure and Applied Mathematics 13 Interscience Publisher a division of John Wiley and Sons, New York (1962). Zbl 0123.03402, MR 0155856
Reference: [17] Reiten, I.: The converse of a theorem of Sharp on Gorenstein modules.Proc. Am. Math. Soc. 32 (1972), 417-420. Zbl 0235.13016, MR 0296067, 10.1090/S0002-9939-1972-0296067-7
Reference: [18] Salimi, M., Tavasoli, E., Yassemi, S.: Gorenstein homological dimension with respect to a semidualizing module and a generalization of a theorem of Bass.Commun. Algebra 42 (2014), 2213-2221. Zbl 1291.13026, MR 3169700, 10.1080/00927872.2012.717654
Reference: [19] Sather-Wagstaff, S.: Semidualizing Modules.https://ssather.people.clemson.edu/DOCS/sdm.pdf. Zbl 1282.13021
Reference: [20] Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories.J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. Zbl 1140.18010, MR 2400403, 10.1112/jlms/jdm124
Reference: [21] Sather-Wagstaff, S., Sharif, T., White, D.: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules.Algebr. Represent. Theory 14 (2011), 403-428. Zbl 1317.13029, MR 2785915, 10.1007/s10468-009-9195-9
Reference: [22] Takahashi, R., White, D.: Homological aspects of semidualizing modules.Math. Scand. 106 (2010), 5-22. Zbl 1193.13012, MR 2603458, 10.7146/math.scand.a-15121
Reference: [23] Vasconcelos, W. V.: Divisor Theory in Module Categories.North-Holland Mathematics Studies 14. Notas de Matematica 5 North-Holland Publishing, Amsterdam (1974). Zbl 0296.13005, MR 0498530
Reference: [24] White, D.: Gorenstein projective dimension with respect to a semidualizing module.J. Commut. Algebra. 2 (2010), 111-137. Zbl 1237.13029, MR 2607104, 10.1216/JCA-2010-2-1-111
.

Files

Files Size Format View
CzechMathJ_67-2017-1_7.pdf 287.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo