Previous |  Up |  Next

Article

Title: Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds (English)
Author: Dutta, Tamalika
Author: Basu, Nirabhra
Author: BHATTACHARYYA, Arindam
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 55
Issue: 2
Year: 2016
Pages: 57-70
Summary lang: English
.
Category: math
.
Summary: In this paper we have studied conformal curvature tensor, conharmonic curvature tensor, projective curvature tensor in Lorentzian $\alpha $-Sasakian manifolds admitting conformal Ricci soliton. We have found that a Weyl conformally semi symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also studied conharmonically Ricci symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton. Similarly we have proved that a Lorentzian $\alpha $-Sasakian manifold $M$ with projective curvature tensor admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also established an example of 3-dimensional Lorentzian $\alpha $-Sasakian manifold. (English)
Keyword: Conformal Ricci soliton
Keyword: conformal curvature tensor
Keyword: conharmonic curvature tensor
Keyword: Lorentzian $\alpha $-Sasakian manifolds
Keyword: projective curvature tensor
MSC: 53C25
MSC: 53C44
MSC: 53D10
idZBL: Zbl 1365.53046
.
Date available: 2017-03-16T12:41:39Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146061
.
Reference: [1] Bagewadi, C. S., Ingalahalli, G.: Ricci solitons in Lorentzian $\alpha $-Sasakian manifolds.. Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 28 (2012), 59–68. Zbl 1265.53036, MR 2942704
Reference: [2] Bagewadi, C. S., :, Venkatesha: Some curvature tensors on a trans-Sasakian manifold.. Turk. J. Math. 31 (2007), 111–121. Zbl 1138.53028, MR 2335656
Reference: [3] Basu, N., Bhattacharyya, A.: Conformal Ricci soliton in Kenmotsu manifold.. Global Journal of Advanced Research on Classical and Modern Geometries 4 (2015), 15–21. MR 3343178
Reference: [4] Bejan, C. L., Crasmareanu, M.: Ricci solitons in manifolds with quasi-constant curvature.. Publ. Math. Debrecen 78, 1 (2011), 235–243. Zbl 1274.53097, MR 2777674, 10.5486/PMD.2011.4797
Reference: [5] Dutta, T., Basu, N., Bhattacharyya, A.: Some curvature identities on an almost conformal gradient shrinking Ricci soliton.. Journal of Dynamical Systems and Geometric Theories 13, 2 (2015), 163–178. MR 3427160, 10.1080/1726037X.2015.1076221
Reference: [6] Dutta, T., Basu, N., Bhattacharyya, A.: Almost conformal Ricci solitons on $3$-dimensional trans-Sasakian manifold.. Hacettepe Journal of Mathematics and Statistics 45, 5 (2016), 1379–1392. Zbl 1369.53021, MR 3699549
Reference: [7] Dutta, T., Bhattacharyya, A., Debnath, S.: Conformal Ricci soliton in almost C($\lambda $) manifold.. Internat. J. Math. Combin. 3 (2016), 17–26.
Reference: [8] Dwivedi, M. K., Kim, J.-S.: On conharmonic curvature tensor in K-contact and Sasakian manifolds.. Bulletin of the Malaysian Mathematical Sciences Society 34, 1 (2011), 171–180. Zbl 1207.53040, MR 2783789
Reference: [9] Fischer, A. E.: An introduction to conformal Ricci flow.. class.Quantum Grav. 21 (2004), S171–S218. Zbl 1050.53029, MR 2053005, 10.1088/0264-9381/21/3/011
Reference: [10] Formella, S., Mikeš, J.: Geodesic mappings of Einstein spaces.. Ann. Sci. Stetinenses 9 (1994), 31–40.
Reference: [11] Hamilton, R. S.: Three Manifold with positive Ricci curvature.. J. Differential Geom. 17, 2 (1982), 255–306. MR 0664497, 10.4310/jdg/1214436922
Reference: [12] Hamilton, R. S.: The Ricci flow on surfaces.. Contemporary Mathematics 71 (1988), 237–261. Zbl 0663.53031, MR 0954419, 10.1090/conm/071/954419
Reference: [13] Hinterleitner, I., Mikeš, J.: Geodesic mappings and Einstein spaces.. In: Geometric Methods in Physics, Trends in Mathematics, Birkhäuser, Basel, 2013, 331–335. Zbl 1268.53049, MR 3364052
Reference: [14] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vektor fields in Riemannian spaces.. Arch. Math. 5 (2008), 385–390. MR 2501574
Reference: [15] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vector fields on conformally flat spaces.. AIP Conf. Proc. 1191 (2009), 98–103.
Reference: [16] Hinterleitner, I., Mikeš, J.: Geodesic mappings onto Weyl manifolds.. J. Appl. Math. 2, 1 (2009), 125–133; In: Proc. 8th Int. Conf. on Appl. Math. (APLIMAT 2009), Slovak University of Technology, Bratislava, 2009, 423–430.
Reference: [17] Mikeš, J.: Geodesic mappings of semisymmetric Riemannian spaces.. Archives at VINITI, Odessk. Univ., Moscow, 1976.
Reference: [18] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations.. Palacky Univ. Press, Olomouc, 2009. Zbl 1222.53002, MR 2682926
Reference: [19] Mikeš, J.: Differential Geometry of Special Mappings.. Palacky Univ. Press, Olomouc, 2015. Zbl 1337.53001, MR 3442960
Reference: [20] Mikeš, J., Starko, G. A.: On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces.. Ukr. Geom. Sb. 32 (1989), 92–98. Zbl 0711.53042, MR 1049372
Reference: [21] Mikeš, J.: On Sasaki spaces and equidistant Kähler spaces.. Sov. Math., Dokl. 34 (1987), 428–431. Zbl 0631.53018, MR 0819428
Reference: [22] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces.. J. Math. Sci. 78, 3 (1996), 311–333. MR 1384327, 10.1007/BF02365193
Reference: [23] Mikeš, J.: On geodesic mappings of 2-Ricci symmetric Riemannian spaces.. Math. Notes 28 (1981), 622–624; Transl. from: Mat. Zametki 28 (1980), 313–317. MR 0587405, 10.1007/BF01157926
Reference: [24] Mikeš, J.: Geodesic mappings of $m$-symmetric and generalized semisymmetric spaces.. Russian Math. (Iz. VUZ) 36, 8 (1992), 38–42. MR 1233688
Reference: [25] Mikeš, J.: Geodesic mappings on semisymmetric spaces.. Russian Math. (Iz. VUZ) 38, 2 (1994), 35–41. MR 1302090
Reference: [26] Mikeš, J.: Equidistant Kähler spaces.. Math. Notes 38 (1985), 855–858. Zbl 0594.53024, MR 0819428, 10.1007/BF01158415
Reference: [27] Sekigawa, K.: Almost Hermitian manifolds satisfying some curvature conditions.. Kodai Math. J. 2 (1979), 384–405. Zbl 0423.53030, MR 0553243, 10.2996/kmj/1138036068
Reference: [28] Sharma, R.: Almost Ricci solitons and K-contact geometry.. Monatsh. Math. 175 (2014), 621–628. Zbl 1307.53038, MR 3273671, 10.1007/s00605-014-0657-8
Reference: [29] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces.. Nauka, Moscow, 1979. Zbl 0637.53020
Reference: [30] Szabo, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X,Y).R = 0$, The local version.. J. Diff. Geom. 17 (1982), 531–582. MR 0683165, 10.4310/jdg/1214437486
Reference: [31] Tripathi, M. M.: Ricci solitons in contact metric manifolds.. arXiv:0801,4222v1 [mathDG] 2008 (2008), 1–6.
Reference: [32] Yadav, S., Suthar, D. L.: Certain derivation on Lorentzian $\alpha $-Sasakian manifold.. Global Journal of Science Frontier Research Mathematics and Decision Sciences 12, 2 (2012), 1–6. MR 2814463
.

Files

Files Size Format View
ActaOlom_55-2016-2_6.pdf 330.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo