Previous |  Up |  Next

Article

Title: Polytopes, quasi-minuscule representations and rational surfaces (English)
Author: Lee, Jae-Hyouk
Author: Xu, Mang
Author: Zhang, Jiajin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 397-415
Summary lang: English
.
Category: math
.
Summary: We describe the relation between quasi-minuscule representations, polytopes and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each quasi-minuscule representation we attach a class of rational surfaces, and realize such a representation as an associated vector bundle of a principal bundle over these surfaces. Moreover, any quasi-minuscule representation can be defined by rational curves, or their disjoint unions in a rational surface, satisfying certain natural numerical conditions. (English)
Keyword: rational surface
Keyword: minuscule representation
Keyword: polytope
MSC: 14J26
MSC: 14N20
idZBL: Zbl 06738527
idMR: MR3661049
DOI: 10.21136/CMJ.2017.0676-15
.
Date available: 2017-06-01T14:28:26Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146764
.
Reference: [1] Bourbaki, N.: Elements of Mathematics. Lie Groups and Lie algebras. Chapters 4-6.Springer, Berlin (2002). Zbl 0983.17001, MR 1890629, 10.1007/978-3-540-89394-3
Reference: [2] Coxeter, H. S. M.: Regular and semiregular polytopes. II.Math. Z. 188 (1985), 559-591. Zbl 0547.52005, MR 0774558, 10.1007/BF01161657
Reference: [3] Coxeter, H. S. M.: Regular and semi-regular polytopes. III.Math. Z. 200 (1988), 3-45. Zbl 0633.52006, MR 0972395, 10.1007/BF01161745
Reference: [4] Coxeter, H. S. M.: The evolution of Coxeter-Dynkin diagrams.Nieuw Arch. Wiskd., IV. Ser. 9 (1991), 233-248. Zbl 0759.20013, MR 1166143
Reference: [5] Demazure, M., Pinkham, H., (eds.), B. Teissier: Séminaire sur les Singularités des Surfaces.Centre de Mathématiques de l'Ecole Polytechnique, Palaiseau 1976-1977, Lecture Notes in Mathematics 777, Springer, Berlin (1980), French. Zbl 0415.00010, MR 0579026, 10.1007/BFb0085872
Reference: [6] Donagi, R. Y.: Principal bundles on elliptic fibrations.Asian J. Math. 1 (1997), 214-223. Zbl 0927.14006, MR 1491982, 10.4310/AJM.1997.v1.n2.a1
Reference: [7] Donagi, R.: Taniguchi lectures on principal bundles on elliptic fibrations.Integrable Systems and Algebraic Geometry Conf. Proc., Kobe/Kyoto, 1997, World Scientific, Singapore (1998), 33-46. Zbl 0963.14004, MR 1672104
Reference: [8] Friedman, R., Morgan, J., Witten, E.: Vector bundles and $F$ theory.Commun. Math. Phys. 187 (1997), 679-743. Zbl 0919.14010, MR 1468319, 10.1007/s002200050154
Reference: [9] Henry-Labordère, P., Julia, B., Paulot, L.: Borcherds symmetries in M-theory.J. High Energy Phys. 2002 (2002), No. 49, 31 pages. MR 1911396, 10.1088/1126-6708/2002/04/049
Reference: [10] Henry-Labordère, P., Julia, B., Paulot, L.: Real Borcherds superalgebras and M-theory.J. High Energy Phys. 2003 (2003), No. 60, 21 pages. MR 1989546, 10.1088/1126-6708/2003/04/060
Reference: [11] Lee, J.-H.: Gosset polytopes in Picard groups of del Pezzo surfaces.Can. J. Math. 64 (2012), 123-150. Zbl 1268.14038, MR 2932172, 10.4153/CJM-2011-063-6
Reference: [12] Lee, J.-H.: Contractions of del Pezzo surfaces to $\mathbb P^{2}$ or $\mathbb P^{1}\times\mathbb P^{1}$.Rocky Mt. J. Math. 46 (2016), 1263-1273. Zbl 06642645, MR 3563181, 10.1216/RMJ-2016-46-4-1263
Reference: [13] Leung, N. C.: ADE-bundle over rational surfaces, configuration of lines and rulings.Available at arXiv:math.AG/0009192.
Reference: [14] Leung, N. C., Xu, M., Zhang, J.: Kac-Moody $\widetilde E_k$-bundles over elliptic curves and del Pezzo surfaces with singularities of type $A$.Math. Ann. 352 (2012), 805-828. Zbl 1242.14036, MR 2892453, 10.1007/s00208-011-0661-4
Reference: [15] Leung, N. C., Zhang, J.: Moduli of bundles over rational surfaces and elliptic curves. I: Simply laced cases.J. Lond. Math. Soc., II. Ser. 80 (2009), 750-770. Zbl 1188.14025, MR 2559127, 10.1112/jlms/jdp053
Reference: [16] Looijenga, E.: Root systems and elliptic curves.Invent. Math. 38 (1976), 17-32. Zbl 0358.17016, MR 0466134, 10.1007/BF01390167
Reference: [17] Manin, Y. I.: Cubic Forms: Algebra, Geometry, Arithmetic.North-Holland Mathematical Library 4, North-Holland Publishing Company, Amsterdam; American Elsevier Publishing Company, New York (1974). Zbl 0277.14014, MR 0460349
Reference: [18] Manivel, L.: Configurations of lines and models of Lie algebras.J. Algebra 304 (2006), 457-486. Zbl 1167.17001, MR 2256401, 10.1016/j.jalgebra.2006.04.029
Reference: [19] Seshadri, C. S.: Geometry of $G/P$. I: Theory of standard monomials for minuscule representations.C. P. Ramanujam---A Tribute Tata Inst. Fundam. Res., Stud. Math. 8, Springer, Berlin (1978), 207-239. Zbl 0447.14010, MR 0541023
.

Files

Files Size Format View
CzechMathJ_67-2017-2_9.pdf 357.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo