Previous |  Up |  Next

Article

Title: Certain decompositions of matrices over Abelian rings (English)
Author: Ashrafi, Nahid
Author: Sheibani, Marjan
Author: Chen, Huanyin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 417-425
Summary lang: English
.
Category: math
.
Summary: A ring $R$ is (weakly) nil clean provided that every element in $R$ is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let $R$ be abelian, and let $n\in {\Bbb N}$. We prove that $M_n(R)$ is nil clean if and only if $R/J(R)$ is Boolean and $M_n(J(R))$ is nil. Furthermore, we prove that $R$ is weakly nil clean if and only if $R$ is periodic; $R/J(R)$ is ${\Bbb Z}_3$, $B$ or ${\Bbb Z}_3\oplus B$ where $B$ is a Boolean ring, and that $M_n(R)$ is weakly nil clean if and only if $M_n(R)$ is nil clean for all $n\geq 2$. (English)
Keyword: idempotent element
Keyword: nilpotent element
Keyword: nil clean ring
Keyword: weakly nil clean ring
MSC: 16E50
MSC: 16S34
MSC: 16U10
idZBL: Zbl 06738528
idMR: MR3661050
DOI: 10.21136/CMJ.2017.0677-15
.
Date available: 2017-06-01T14:28:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146765
.
Reference: [1] Ahn, M.-S., Anderson, D. D.: Weakly clean rings and almost clean rings.Rocky Mt. J. Math. 36 (2006), 783-798. Zbl 1131.13301, MR 2254362, 10.1216/rmjm/1181069429
Reference: [2] Anderson, D. D., Camillo, V. P.: Commutative rings whose elements are a sum of a unit and idempotent.Commun. Algebra 30 (2002), 3327-3336. Zbl 1083.13501, MR 1914999, 10.1081/AGB-120004490
Reference: [3] Andrica, D., Călugăreanu, G.: A nil-clean $2\times 2$ matrix over the integers which is not clean.J. Algebra Appl. 13 (2014), Article ID 1450009, 9 pages. Zbl 1294.16019, MR 3195166, 10.1142/S0219498814500091
Reference: [4] Breaz, S., Călugăreanu, G., Danchev, P., Micu, T.: Nil-clean matrix rings.Linear Algebra Appl. 439 (2013), 3115-3119. Zbl 06259710, MR 3116417, 10.1016/j.laa.2013.08.027
Reference: [5] Breaz, S., Danchev, P., Zhou, Y.: Rings in which every element is either a sum or a difference of a nilpotent and an idempotent.J. Algebra Appl. 15 (2016), Article ID 1650148, 11 pages. Zbl 06619808, MR 3528770, 10.1142/S0219498816501486
Reference: [6] Burgess, W. D., Stephenson, W.: Rings all of whose Pierce stalks are local.Canad. Math. Bull. 22 (1979), 159-164. Zbl 0411.16009, MR 0537296, 10.4153/CMB-1979-022-8
Reference: [7] Chacron, M.: On a theorem of Herstein.Can. J. Math. 21 (1969), 1348-1353. Zbl 0213.04302, MR 0262295, 10.4153/CJM-1969-148-5
Reference: [8] Chen, H.: Rings Related to Stable Range Conditions.Series in Algebra 11, World Scientific, Hackensack (2011). Zbl 1245.16002, MR 2752904
Reference: [9] Danchev, P. V., McGovern, W. W.: Commutative weakly nil clean unital rings.J. Algebra Appl. 425 (2015), 410-422. Zbl 1316.16028, MR 3295991, 10.1016/j.jalgebra.2014.12.003
Reference: [10] Diesl, A. J.: Nil clean rings.J. Algebra 383 (2013), 197-211. Zbl 1296.16016, MR 3037975, 10.1016/j.jalgebra.2013.02.020
Reference: [11] Koşan, M. T., Lee, T.-K., Zhou, Y.: When is every matrix over a division ring a sum of an idempotent and a nilpotent?.Linear Algebra Appl. 450 (2014), 7-12. Zbl 1303.15016, MR 3192466, 10.1016/j.laa.2014.02.047
Reference: [12] McGovern, W. W., Raja, S., Sharp, A.: Commutative nil clean group rings.J. Algebra Appl. 14 (2015), Article ID 1550094, 5 pages. Zbl 1325.16024, MR 3338090, 10.1142/S0219498815500942
Reference: [13] Nicholson, W. K.: Lifting idempotents and exchange rings.Trans. Am. Math. Soc. 229 (1977), 269-278. Zbl 0352.16006, MR 0439876, 10.2307/1998510
Reference: [14] Yu, H.-P.: On quasi-duo rings.Glasg. Math. J. 37 (1995), 21-31. Zbl 0819.16001, MR 1316960, 10.1017/S0017089500030342
.

Files

Files Size Format View
CzechMathJ_67-2017-2_10.pdf 240.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo