Previous |  Up |  Next

Article

Title: A new characterization of symmetric group by NSE (English)
Author: Babai, Azam
Author: Akhlaghi, Zeinab
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 427-437
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a group and $\omega (G)$ be the set of element orders of $G$. Let $k\in \omega (G)$ and $m_k(G)$ be the number of elements of order $k$ in $G$. Let nse$(G) = \{m_k(G) \colon k \in \omega (G)\}$. Assume $r$ is a prime number and let $G$ be a group such that nse$(G)=$ nse$(S_r)$, where $S_r$ is the symmetric group of degree $r$. In this paper we prove that $G\cong S_r$, if $r$ divides the order of $G$ and $r^2$ does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components. (English)
Keyword: set of the numbers of elements of the same order
Keyword: prime graph
MSC: 20D06
MSC: 20D15
idZBL: Zbl 06738529
idMR: MR3661051
DOI: 10.21136/CMJ.2017.0700-15
.
Date available: 2017-06-01T14:29:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146766
.
Reference: [1] Ahanjideh, N., Asadian, B.: NSE characterization of some alternating groups.J. Algebra Appl. 14 (2015), Article ID 1550012, 14 pages. Zbl 1320.20016, MR 3270051, 10.1142/S0219498815500127
Reference: [2] Asboei, A. K.: A new characterization of PGL$(2,p)$.J. Algebra Appl. 12 (2013), Article ID 1350040, 5 pages. Zbl 1278.20013, MR 3063479, 10.1142/S0219498813500400
Reference: [3] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A.: A characterization of symmetric group $S_r$, where $r$ is prime number.Ann. Math. Inform. 40 (2012), 13-23. Zbl 1261.20025, MR 3005112
Reference: [4] Frobenius, G.: Verallgemeinerung des Sylow'schen Satzes.Berl. Ber. (1895), 981-993 German \99999JFM99999 26.0158.01. 10.3931/e-rara-18880
Reference: [5] Gorenstein, D.: Finite Groups.Harper's Series in Modern Mathematics, Harper and Row, Publishers, New York (1968). Zbl 0185.05701, MR 0231903
Reference: [6] Gruenberg, K. W., Roggenkamp, K. W.: Decomposition of the augmentation ideal and of the relation modules of a finite group.Proc. Lond. Math. Soc., III. Ser. 31 (1975), 149-166. Zbl 0313.20004, MR 0374247, 10.1112/plms/s3-31.2.149
Reference: [7] M. Hall, Jr.: The Theory of Groups.The Macmillan Company, New York (1959). Zbl 0084.02202, MR 0103215
Reference: [8] Huppert, B.: Endliche Gruppen. I.Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin German (1967). Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3
Reference: [9] Khatami, M., Khosravi, B., Akhlaghi, Z.: A new characterization for some linear groups.Monatsh. Math. 163 (2011), 39-50. Zbl 1216.20022, MR 2787581, 10.1007/s00605-009-0168-1
Reference: [10] Kondrat'ev, A. S., Mazurov, V. D.: Recognition of alternating groups of prime degree from their element orders.Sib. Math. J. 41 (2000), 294-302 translation from Sib. Mat. Zh. 41 359-369 Russian 2000. Zbl 0956.20007, MR 1762188, 10.1007/BF02674599
Reference: [11] Shao, C., Jiang, Q.: A new characterization of some linear groups by nse.J. Algebra Appl. 13 (2014), Article ID 1350094, 9 pages. Zbl 1286.20021, MR 3119655, 10.1142/S0219498813500941
Reference: [12] Shi, W. J.: A new characterization of the sporadic simple groups.Group Theory Proc. Conf., Singapore, 1987, Walter de Gruyter, Berlin (1989), 531-540. Zbl 0657.20017, MR 0981868, 10.1515/9783110848397-040
Reference: [13] Weisner, L.: On the Sylow subgroups of the symmetric and alternating groups.Am. J. Math. 47 (1925), 121-124 \99999JFM99999 51.0117.02. MR 1506549, 10.2307/2370639
.

Files

Files Size Format View
CzechMathJ_67-2017-2_11.pdf 265.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo