Previous |  Up |  Next

Article

Title: Density of solutions to quadratic congruences (English)
Author: Prabhu, Neha
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 439-455
Summary lang: English
.
Category: math
.
Summary: A classical result in number theory is Dirichlet's theorem on the density of primes in an arithmetic progression. We prove a similar result for numbers with exactly $k$ prime factors for $k>1$. Building upon a proof by E. M. Wright in 1954, we compute the natural density of such numbers where each prime satisfies a congruence condition. As an application, we obtain the density of squarefree $n\leq x$ with $k$ prime factors such that a fixed quadratic equation has exactly $2^k$ solutions modulo $n$. (English)
Keyword: Dirichlet's theorem
Keyword: asymptotic density
Keyword: primes in arithmetic progression
Keyword: squarefree number
MSC: 11B25
MSC: 11D45
MSC: 11N37
idZBL: Zbl 06738530
idMR: MR3661052
DOI: 10.21136/CMJ.0.0712-15
.
Date available: 2017-06-01T14:29:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146767
.
Reference: [1] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers.Oxford University Press, Oxford (2008). Zbl 1159.11001, MR 2445243
Reference: [2] Kornblum, H., Landau, E.: Über die Primfunktionen in einer arithmetischen Progression.Math. Zeitschr. 5 (1919), 100-111 German. Zbl 47.0154.02, MR 1544375, 10.1007/BF01203156
Reference: [3] Landau, E.: Sur quelques problèmes relatifs à la distribution des nombres premiers.S. M. F. Bull. 28 (1900), 25-38 French. Zbl 31.0200.01, MR 1504359
Reference: [4] Montgomery, H. L., Vaughan, R. C.: Multiplicative Number Theory. I. Classical Theory.Cambridge Studies in Advanced Mathematics 97, Cambridge University Press, Cambridge (2007). Zbl 1142.11001, MR 2378655, 10.1017/CBO9780511618314
Reference: [5] Pomerance, C.: On the distribution of amicable numbers.J. Reine Angew. Math. 293/294 (1977), 217-222. Zbl 0349.10004, MR 0447087, 10.1515/crll.1977.293-294.217
Reference: [6] Ribenboim, P.: The New Book of Prime Number Records.Springer, New York (1996). Zbl 0856.11001, MR 1377060, 10.1007/978-1-4612-0759-7
Reference: [7] Wright, E. M.: A simple proof of a theorem of Landau.Proc. Edinb. Math. Soc., II. Ser. 9 (1954), 87-90. Zbl 0057.28601, MR 0065579, 10.1017/S0013091500021349
.

Files

Files Size Format View
CzechMathJ_67-2017-2_12.pdf 291.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo