Previous |  Up |  Next

Article

Title: Copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $ (English)
Author: Popa, Dumitru
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 457-467
Summary lang: English
.
Category: math
.
Summary: We study the presence of copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}( C[0,1] ,X)$. By using Dvoretzky's theorem we deduce that if $X$ is an infinite-dimensional Banach space, then $\Pi _{2}( C[ 0,1] ,X) $ contains $\lambda \sqrt {2}$-uniformly copies of $l_{\infty }^{n}$'s and $\Pi _{1}( C[ 0,1] ,X) $ contains $\lambda $-uniformly copies of $l_{2}^{n}$'s for all $\lambda >1$. As an application, we show that if $X$ is an infinite-dimensional Banach space then the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}( C[ 0,1] ,X) $ are distinct, extending the well-known result that the spaces $\Pi _{2}( C[ 0,1],X) $ and $\mathcal {N}( C[ 0,1] ,X) $ are distinct. (English)
Keyword: $p$-summing linear operators
Keyword: copies of $l_{p}^{n}$'s uniformly
Keyword: local structure of a Banach space
Keyword: multiplication operator
Keyword: average
MSC: 46B07
MSC: 46B28
MSC: 47B10
MSC: 47L20
idZBL: Zbl 06738531
idMR: MR3661053
DOI: 10.21136/CMJ.2017.0009-16
.
Date available: 2017-06-01T14:30:05Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146768
.
Reference: [1] Costara, C., Popa, D.: Exercises in Functional Analysis.Kluwer Texts in the Mathematical Sciences 26, Kluwer Academic Publishers Group, Dordrecht (2003). Zbl 1070.46001, MR 2027363, 10.1007/978-94-017-0223-2
Reference: [2] Defant, A., Floret, K.: Tensor Norms and Operator Ideals.North-Holland Mathematics Studies 176, North-Holland Publishing, Amsterdam (1993). Zbl 0774.46018, MR 1209438, 10.1016/s0304-0208(08)x7019-7
Reference: [3] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics 43, Cambridge University Press, Cambridge (1995). Zbl 0855.47016, MR 1342297, 10.1017/CBO9780511526138
Reference: [4] J. Diestel, J. J. Uhl, Jr.: Vector Measures.Mathematical Surveys 15, American Mathematical Society, Providence (1977). Zbl 0369.46039, MR 0453964, 10.1090/surv/015
Reference: [5] Lima, Å., Lima, V., Oja, E.: Absolutely summing operators on $C[0,1]$ as a tree space and the bounded approximation property.J. Funct. Anal. 259 (2010), 2886-2901. Zbl 1207.46019, MR 2719278, 10.1016/j.jfa.2010.07.017
Reference: [6] Pietsch, A.: Operator Ideals.Mathematische Monographien 16, VEB Deutscher der Wissenschaften, Berlin (1978). Zbl 0399.47039, MR 0519680
Reference: [7] Popa, D.: Examples of operators on $C[0,1]$ distinguishing certain operator ideals.Arch. Math. 88 (2007), 349-357. Zbl 1124.47013, MR 2311842, 10.1007/s00013-006-1916-2
Reference: [8] Popa, D.: Khinchin's inequality, Dunford-Pettis and compact operators on the space $C([0,1],X)$.Proc. Indian Acad. Sci., Math. Sci. 117 (2007), 13-30. Zbl 1124.47023, MR 2300675, 10.1007/s12044-007-0002-4
Reference: [9] Popa, D.: Averages and compact, absolutely summing and nuclear operators on $C(\Omega)$.J. Korean Math. Soc. 47 (2010), 899-924. Zbl 1214.47023, MR 2722999, 10.4134/JKMS.2010.47.5.899
Reference: [10] Sofi, M. A.: Factoring operators over Hilbert-Schmidt maps and vector measures.Indag. Math., New Ser. 20 (2009), 273-284. Zbl 1193.46005, MR 2599817, 10.1016/S0019-3577(09)80014-1
.

Files

Files Size Format View
CzechMathJ_67-2017-2_13.pdf 274.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo