Previous |  Up |  Next

Article

Title: A note on the independent domination number versus the domination number in bipartite graphs (English)
Author: Wang, Shaohui
Author: Wei, Bing
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 533-536
Summary lang: English
.
Category: math
.
Summary: Let $\gamma (G)$ and $i(G)$ be the domination number and the independent domination number of $G$, respectively. Rad and Volkmann posted a conjecture that $i(G)/ \gamma (G) \leq \Delta (G)/2$ for any graph $G$, where $\Delta (G)$ is its maximum degree (see N. J. Rad, L. Volkmann (2013)). In this work, we verify the conjecture for bipartite graphs. Several graph classes attaining the extremal bound and graphs containing odd cycles with the ratio larger than $\Delta (G)/2$ are provided as well. (English)
Keyword: domination
Keyword: independent domination
MSC: 05C05
MSC: 05C69
idZBL: Zbl 06738536
idMR: MR3661058
DOI: 10.21136/CMJ.2017.0068-16
.
Date available: 2017-06-01T14:32:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146773
.
Reference: [1] Allan, R. B., Laskar, R.: On domination and independent domination numbers of a graph.Discrete Math. 23 (1978), 73-76. Zbl 0416.05064, MR 0523402, 10.1016/0012-365X(78)90105-X
Reference: [2] Beyer, T., Proskurowski, A., Hedetniemi, S., Mitchell, S.: Independent domination in trees.Proc. Conf. on Combinatorics, Graph Theory and Computing Baton Rouge, 1977, Congressus Numerantium, Utilitas Math., Winnipeg (1977), 321-328. Zbl 0417.05020, MR 0485473
Reference: [3] Furuya, M., Ozeki, K., Sasaki, A.: On the ratio of the domination number and the independent domination number in graphs.Discrete Appl. Math. 178 (2014), 157-159. Zbl 1300.05219, MR 3258174, 10.1016/j.dam.2014.06.005
Reference: [4] Goddard, W., Henning, M. A.: Independent domination in graphs: A survey and recent results.Discrete Math. 313 (2013), 839-854. Zbl 1260.05113, MR 3017969, 10.1016/j.disc.2012.11.031
Reference: [5] Goddard, W., Henning, M. A., Lyle, J., Southey, J.: On the independent domination number of regular graphs.Ann. Comb. 16 (2012), 719-732. Zbl 1256.05169, MR 3000440, 10.1007/s00026-012-0155-4
Reference: [6] Rad, N. J., Volkmann, L.: A note on the independent domination number in graphs.Discrete Appl. Math. 161 (2013), 3087-3089. Zbl 1287.05107, MR 3126675, 10.1016/j.dam.2013.07.009
Reference: [7] Southey, J., Henning, M. A.: Domination versus independent domination in cubic graphs.Discrete Math. 313 (2013), 1212-1220. Zbl 1277.05129, MR 3034752, 10.1016/j.disc.2012.01.003
Reference: [8] Wang, S., Wei, B.: Multiplicative Zagreb indices of $k$-trees.Discrete Appl. Math. 180 (2015), 168-175. Zbl 1303.05034, MR 3280706, 10.1016/j.dam.2014.08.017
Reference: [9] West, D. B.: Introduction to Graph Theory.Upper Saddle River, Prentice Hall (1996). Zbl 0845.05001, MR 1367739
.

Files

Files Size Format View
CzechMathJ_67-2017-2_18.pdf 199.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo