Previous |  Up |  Next

Article

Title: On projectional skeletons in Vašák spaces (English)
Author: Kalenda, Ondřej F. K.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 2
Year: 2017
Pages: 173-182
Summary lang: English
.
Category: math
.
Summary: We provide an alternative proof of the theorem saying that any Vašák (or, weakly countably determined) Banach space admits a full $1$-projectional skeleton. The proof is done with the use of the method of elementary submodels and is comparably simple as the proof given by W. Kubiś (2009) in case of weakly compactly generated spaces. (English)
Keyword: Vašák Banach space
Keyword: projectional skeleton
Keyword: elementary submodel
MSC: 03C30
MSC: 46B26
idZBL: Zbl 06773712
idMR: MR3666939
DOI: 10.14712/1213-7243.2015.200
.
Date available: 2017-06-13T13:22:35Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146786
.
Reference: [1] Amir D., Lindenstrauss J.: The structure of weakly compact sets in Banach spaces.Ann. of Math. 88 (1968), no. 2, 35–46. Zbl 0164.14903, MR 0228983, 10.2307/1970554
Reference: [2] Bohata M., Hamhalter J., Kalenda O.: Decompositions of preduals of JBW and JBW* algebras.J. Math. Anal. Appl. 446 (2017), no. 1, 18–37. MR 3554714, 10.1016/j.jmaa.2016.08.031
Reference: [3] Cúth M.: Separable reduction theorems by the method of elementary submodels.Fund. Math. 219 (2012), no. 3, 191–222. Zbl 1270.46015, MR 3001239, 10.4064/fm219-3-1
Reference: [4] Cúth M., Kalenda O.F.K.: Rich families and elementary submodels.Cent. Eur. J. Math. 12 (2014), no. 7, 1026–1039. Zbl 1323.46014, MR 3188463
Reference: [5] Cúth M., Kalenda O.F.K.: Monotone retractability and retractional skeletons.J. Math. Anal. Appl. 423 (2015), no. 1, 18–31. Zbl 1312.54005, MR 3273164, 10.1016/j.jmaa.2014.09.029
Reference: [6] Cúth M., Rmoutil M., Zelený M.: On separable determination of $\sigma$-$\bold{P}$-porous sets in Banach spaces.Topology Appl. 180 (2015), 64–84. MR 3293266, 10.1016/j.topol.2014.11.005
Reference: [7] Dow A.: An introduction to applications of elementary submodels to topology.Topology Proc. 13 (1988), no. 1, 17–72. Zbl 0696.03024, MR 1031969
Reference: [8] Fabian M., Godefroy G.: The dual of every Asplund space admits a projectional resolution of the identity.Studia Math. 91 (1988), no. 2, 141–151. Zbl 0692.46012, MR 0985081, 10.4064/sm-91-2-141-151
Reference: [9] Fabian M.J.: Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces.Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1997. Zbl 0883.46011, MR 1461271
Reference: [10] Gul'ko S.P.: The structure of spaces of continuous functions and their hereditary paracompactness.Uspekhi Mat. Nauk 34 (1979), no. 6(210), 33–40. MR 0562814
Reference: [11] Kechris A.S.: Classical Descriptive Set Theory.Graduate Texts in Mathematics, 156, Springer, New York, 1995. Zbl 0819.04002, MR 1321597
Reference: [12] Koszmider P.: Projections in weakly compactly generated Banach spaces and Chang's conjecture.J. Appl. Anal. 11 (2005), no. 2, 187–205. Zbl 1101.46013, MR 2195512, 10.1515/JAA.2005.187
Reference: [13] Kubiś W.: Banach spaces with projectional skeletons.J. Math. Anal. Appl. 350 (2009), no. 2, 758–776. Zbl 1166.46008, MR 2474810, 10.1016/j.jmaa.2008.07.006
Reference: [14] Kunen K.: Set Theory. An Introduction to Independence Proofs.reprint of the 1980 original, Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam, 1983. Zbl 0534.03026, MR 0756630
Reference: [15] Mercourakis S.: On weakly countably determined Banach spaces.Trans. Amer. Math. Soc. 300 (1987), no. 1, 307–327. Zbl 0621.46018, MR 0871678, 10.1090/S0002-9947-1987-0871678-1
Reference: [16] Orihuela J., Valdivia M.: Projective generators and resolutions of identity in Banach spaces.Congress on Functional Analysis (Madrid, 1988), Rev. Mat. Univ. Complut. Madrid 2 (1989), suppl., 179–199. Zbl 0717.46009, MR 1057218
Reference: [17] Valdivia M.: Resolutions of the identity in certain Banach spaces.Collect. Math. 39 (1988), no. 2, 127–140. Zbl 0718.46006, MR 1027683
Reference: [18] Valdivia M.: Simultaneous resolutions of the identity operator in normed spaces.Collect. Math. 42 (1991), no. 3, 265–284 (1992). Zbl 0788.47024, MR 1203185
Reference: [19] Vašák L.: On one generalization of weakly compactly generated Banach spaces.Studia Math. 70 (1981), no. 1, 11–19. Zbl 0376.46012, MR 0646957, 10.4064/sm-70-1-11-19
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-2_4.pdf 277.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo