Previous |  Up |  Next

Article

Title: On the exponential diophantine equation $x^y+y^x=z^z$ (English)
Author: Du, Xiaoying
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 3
Year: 2017
Pages: 645-653
Summary lang: English
.
Category: math
.
Summary: For any positive integer $D$ which is not a square, let $(u_1,v_1)$ be the least positive integer solution of the Pell equation $u^2-Dv^2=1,$ and let $h(4D)$ denote the class number of binary quadratic primitive forms of discriminant $4D$. If $D$ satisfies $2\nmid D$ and $v_1h(4D)\equiv 0 \pmod D$, then $D$ is called a singular number. In this paper, we prove that if $(x,y,z)$ is a positive integer solution of the equation $x^y+y^x=z^z$ with $2\mid z$, then maximum $\max \{x,y,z\}<480000$ and both $x$, $y$ are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions $(x,y,z)$. (English)
Keyword: exponential diophantine equation
Keyword: upper bound for solutions
Keyword: singular number
MSC: 11D61
idZBL: Zbl 06770122
idMR: MR3697908
DOI: 10.21136/CMJ.2017.0645-15
.
Date available: 2017-09-01T12:20:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146851
.
Reference: [1] Bilu, Y., Hanrot, G., Voutier, P. M.: Existence of primitive divisors of Lucas and Lehmer numbers.J. Reine Angew. Math. 539 (2001), 75-122. Zbl 0995.11010, MR 1863855, 10.1515/crll.2001.080
Reference: [2] Birkhoff, G. D., Vandiver, H. S.: On the integral divisors of $a^n-b^n$.Ann. of Math. (2) 5 (1904), 173-180. Zbl 35.0205.01, MR 1503541, 10.2307/2007263
Reference: [3] Buell, D. A.: Computer computation of class groups of quadratic number fields.Congr. Numerantium 22 Conf. Proc. Numerical Mathematics and Computing, Winnipeg 1978 (1979), 3-12 McCarthy et al. Zbl 0424.12001, MR 0541910
Reference: [4] Bugeaud, Y.: Linear forms in $p$-adic logarithms and the Diophantine equation $(x^n-1)/(x-1)=y^q$.Math. Proc. Camb. Philos. Soc. 127 (1999), 373-381. Zbl 0940.11019, MR 1713116, 10.1017/S0305004199003692
Reference: [5] Deng, Y., Zhang, W.: On the odd prime solutions of the Diophantine equation $x^y+y^x=z^z$.Abstr. Appl. Anal. 2014 (2014), Art. ID 186416, 4 pages. MR 3240527, 10.1155/2014/186416
Reference: [6] Le, M.: Some exponential Diophantine equations. I: The equation $D_1x^2-D_2y^2=\lambda k^z$.J. Number Theory 55 (1995), 209-221. Zbl 0852.11015, MR 1366571, 10.1006/jnth.1995.1138
Reference: [7] Le, M.: On the Diophantine equation $y^x-x^y=z^2$.Rocky Mt. J. Math. (2007), 37 1181-1185. Zbl 1146.11019, MR 2360292, 10.1216/rmjm/1187453105
Reference: [8] Liu, Y. N., Guo, X. Y.: A Diophantine equation and its integer solutions.Acta Math. Sin., Chin. Ser. 53 (2010), 853-856. Zbl 1240.11066, MR 2722920
Reference: [9] Luca, F., Mignotte, M.: On the equation $y^x\pm x^y=z^2$.Rocky Mt. J. Math. 30 (2000), 651-661. Zbl 1014.11024, MR 1787004, 10.1216/rmjm/1022009287
Reference: [10] Mollin, R. A., Williams, H. C.: Computation of the class number of a real quadratic field.Util. Math. 41 (1992), 259-308. Zbl 0757.11036, MR 1162532
Reference: [11] Mordell, L. J.: Diophantine Equations.Pure and Applied Mathematics 30, Academic Press, London (1969). Zbl 0188.34503, MR 0249355
Reference: [12] Poorten, A. J. van der, Riele, H. J. J. te, Williams, H. C.: Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100000000000.Math. Comput. 70 (2001), 70 1311-1328 corrig. ibid. 72 521-523 2003. Zbl 0987.11065, MR 1933835, 10.1090/S0025-5718-00-01234-5
Reference: [13] Wu, H.: The application of BHV theorem to the Diophantine equation $x^y+y^x=z^z$.Acta Math. Sin., Chin. Ser. 58 (2015), 679-684. Zbl 06610974, MR 3443204
Reference: [14] Zhang, Z., Luo, J., Yuan, P.: On the Diophantine equation $x^y-y^x=c^z$.Colloq. Math. 128 (2012), 277-285. Zbl 1297.11017, MR 3002356, 10.4064/cm128-2-13
Reference: [15] Zhang, Z., Luo, J., Yuan, P.: On the Diophantine equation $x^y+y^x=z^z$.Chin. Ann. Math., Ser. A (2013), 34A 279-284. Zbl 1299.11037, MR 3114411
Reference: [16] Zhang, Z., Yuan, P.: On the Diophantine equation $ax^y+by^z+cz^x=0$.Int. J. Number Theory 8 (2012), 813-821. Zbl 1271.11040, MR 2904932, 10.1142/S1793042112500467
.

Files

Files Size Format View
CzechMathJ_67-2017-3_4.pdf 263.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo