Previous |  Up |  Next

Article

Title: Invariants of finite groups generated by generalized transvections in the modular case (English)
Author: Han, Xiang
Author: Nan, Jizhu
Author: Gupta, Chander K.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 3
Year: 2017
Pages: 655-698
Summary lang: English
.
Category: math
.
Summary: We investigate the invariant rings of two classes of finite groups $G\leq {\rm GL}(n,F_q)$ which are generated by a number of generalized transvections with an invariant subspace $H$ over a finite field $F_q$ in the modular case. We name these groups generalized transvection groups. One class is concerned with a given invariant subspace which involves roots of unity. Constructing quotient groups and tensors, we deduce the invariant rings and study their Cohen-Macaulay and Gorenstein properties. The other is concerned with different invariant subspaces which have the same dimension. We provide a explicit classification of these groups and calculate their invariant rings. (English)
Keyword: invariant ring
Keyword: transvection
Keyword: generalized transvection group
MSC: 13A50
MSC: 20F55
MSC: 20F99
idZBL: Zbl 06770123
idMR: MR3697909
DOI: 10.21136/CMJ.2017.0044-16
.
Date available: 2017-09-01T12:21:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146852
.
Reference: [1] Bass, H.: On the ubiquity of Gorenstein rings.Math. Z. 82 (1963), 8-28. Zbl 0112.26604, MR 0153708, 10.1007/BF01112819
Reference: [2] Bertin, M.-J.: Anneaux d'invariants d'anneaux de polynômes, en caractéristique $p$.C. R. Acad. Sci., Paris, Sér. A 264 (1967), 653-656 French. Zbl 0147.29503, MR 0215826
Reference: [3] Braun, A.: On the Gorenstein property for modular invariants.J. Algebra 345 (2011), 81-99. Zbl 1243.13003, MR 2842055, 10.1016/j.jalgebra.2011.07.030
Reference: [4] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). Zbl 0909.13005, MR 1251956, 10.1017/CBO9780511608681
Reference: [5] Campbell, H. E. A., Geramita, A. V., Hughes, I. P., Shank, R. J., Wehlau, D. L.: Non-Cohen-Macaulay vector invariants and a Noether bound for a Gorenstein ring of invariants.Can. Math. Bull. 42 (1999), 155-161. Zbl 0942.13007, MR 1692004, 10.4153/CMB-1999-018-4
Reference: [6] Derksen, H., Kemper, G.: Computational Invariant Theory.Encyclopaedia of Mathematical Sciences 130, Invariant Theory and Algebraic Transformation Groups 1, Springer, Berlin (2002). Zbl 1011.13003, MR 1918599, 10.1007/978-3-662-04958-7
Reference: [7] Dickson, L. E.: Invariants of binary forms under modular transformations.Amer. M. S. Trans. 8 (1907), 205-232 \99999JFM99999 38.0147.02. MR 1500782, 10.1090/S0002-9947-1907-1500782-9
Reference: [8] Han, X., Nan, J., Nam, K.: The invariants of generalized transvection groups in the modular case.Commun. Math. Res. 33 (2017), 160-176. MR 3676528
Reference: [9] Hochster, M., Eagon, J. A.: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci.Am. J. Math. 93 (1971), 1020-1058. Zbl 0244.13012, MR 0302643, 10.2307/2373744
Reference: [10] Huang, J.: A gluing construction for polynomial invariants.J. Algebra 328 (2011), 432-442. Zbl 1225.14039, MR 2745575, 10.1016/j.jalgebra.2010.09.010
Reference: [11] Kemper, G., Malle, G.: The finite irreducible linear groups with polynomial ring of invariants.Transform. Groups 2 (1997), 57-89. Zbl 0899.13004, MR 1439246, 10.1007/BF01234631
Reference: [12] Milnor, J. W.: Introduction to Algebraic $K$-Theory.Annals of Mathematics Studies 72, Princeton University Press and University of Tokyo Press, Princeton (1971). Zbl 0237.18005, MR 0349811, 10.1515/9781400881796
Reference: [13] Nakajima, H.: Invariants of finite groups generated by pseudo-reflections in positive characteristic.Tsukuba J. Math. 3 (1979), 109-122. Zbl 0418.20041, MR 0543025, 10.21099/tkbjm/1496158618
Reference: [14] Nakajima, H.: Modular representations of abelian groups with regular rings of invariants.Nagoya Math. J. 86 (1982), 229-248. Zbl 0443.14005, MR 0661227, 10.1017/s0027763000019875
Reference: [15] Nakajima, H.: Regular rings of invariants of unipotent groups.J. Algebra 85 (1983), 253-286. Zbl 0536.20028, MR 0725082, 10.1016/0021-8693(83)90094-7
Reference: [16] Neusel, M. D., Smith, L.: Polynomial invariants of groups associated to configurations of hyperplanes over finite fields.J. Pure Appl. Algebra 122 (1997), 87-105. Zbl 0901.13006, MR 1479349, 10.1016/S0022-4049(96)00079-5
Reference: [17] Neusel, M. D., Smith, L.: Invariant Theory of Finite Groups.Mathematical Surveys and Monographs 94, American Mathematical Society, Providence (2002). Zbl 0999.13002, MR 1869812, 10.1090/surv/094
Reference: [18] Smith, L.: Some rings of invariants that are Cohen-Macaulay.Can. Math. Bull. 39 (1996), 238-240. Zbl 0868.13006, MR 1390361, 10.4153/CMB-1996-030-2
Reference: [19] Smith, L., Stong, R. E.: On the invariant theory of finite groups: Orbit polynomials and splitting principles.J. Algebra 110 (1987), 134-157. Zbl 0652.20046, MR 0904185, 10.1016/0021-8693(87)90040-8
Reference: [20] Stanley, R. P.: Invariants of finite groups and their applications to combinatorics.Bull. Am. Math. Soc., New Ser. 1 (1979), 475-511. Zbl 0497.20002, MR 0526968, 10.1090/S0273-0979-1979-14597-X
Reference: [21] Steinberg, R.: On Dickson's theorem on invariants.J. Fac. Sci., Univ. Tokyo, Sect. I A 34 (1987), 699-707. Zbl 0656.20052, MR 0927606
Reference: [22] You, H., Lan, J.: Decomposition of matrices into 2-involutions.Linear Algebra Appl. 186 (1993), 235-253. Zbl 0773.15005, MR 1217208, 10.1016/0024-3795(93)90294-X
.

Files

Files Size Format View
CzechMathJ_67-2017-3_5.pdf 528.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo