Previous |  Up |  Next

Article

Title: Some properties of generalized reduced Verma modules over $\mathbb {Z}$-graded modular Lie superalgebras (English)
Author: Zheng, Keli
Author: Zhang, Yongzheng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 3
Year: 2017
Pages: 699-713
Summary lang: English
.
Category: math
.
Summary: We study some properties of generalized reduced Verma modules over $\mathbb {Z}$-graded modular Lie superalgebras. Some properties of the generalized reduced Verma modules and coinduced modules are obtained. Moreover, invariant forms on the generalized reduced Verma modules are considered. In particular, for $\mathbb {Z}$-graded modular Lie superalgebras of Cartan type we prove that generalized reduced Verma modules are isomorphic to mixed products of modules. (English)
Keyword: modular Lie superalgebra
Keyword: generalized reduced Verma module
Keyword: coinduced module
Keyword: invariant form
Keyword: mixed product
MSC: 17B05
MSC: 17B10
MSC: 17B50
idZBL: Zbl 06770124
idMR: MR3697910
DOI: 10.21136/CMJ.2017.0050-16
.
Date available: 2017-09-01T12:22:04Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146853
.
Reference: [1] Bernshtein, I. N., Gel'fand, I. M., Gel'fand, S. I.: Structre of representations generated by vectors of highest weight.Funct. Anal. Appl. 5 1-8. (1971), English. Russian original translation from Funkts. Anal. Prilozh. 5 1971 1-9. Zbl 0246.17008, MR 0291204, 10.1007/BF01075841
Reference: [2] Bernshtein, I. N., Gel'fand, I. M., Gel'fand, S. I.: Differential operators on the base affine space and a study of $\frak g$-modules.Lie Groups and Their Representations Proc. Summer Sch. Bolyai Janos Math. Soc., Budapest, 1971; Halsted, New York (1975), 21-64. Zbl 0338.58019, MR 0578996
Reference: [3] Cheng, Y., Su, Y.: Generalized Verma modules over some Block algebras.Front. Math. China 3 (2008), 37-47. MR 2373093, 10.1007/s11464-008-0008-y
Reference: [4] Chiu, S.: The invariant forms on the graded modules of the graded Cartan type Lie algebras.Chin. Ann. Math., Ser. B 13 (1992), 16-24. Zbl 0754.17017, MR 1166870
Reference: [5] Coleman, A. J., Futorny, V. M.: Stratified $L$-modules.J. Algebra 163 (1994), 219-234. Zbl 0817.17009, MR 1257315, 10.1006/jabr.1994.1014
Reference: [6] Dixmier, J.: Algèbres Enveloppantes.Gauthier-Villars, Paris (1974), French. Zbl 0308.17007, MR 0498737
Reference: [7] Farnsteiner, R.: Extension functors of modular Lie algebras.Math. Ann. 288 (1990), 713-730. Zbl 0731.17007, MR 1081272, 10.1007/BF01444560
Reference: [8] Farnsteiner, R., Strade, H.: Shapiro's lemma and its consequences in the cohomology theory of modular Lie algebras.Math. Z. 206 (1991), 153-168. Zbl 0727.17010, MR 1086821, 10.1007/BF02571333
Reference: [9] Futorny, V., Mazorchuk, V.: Structure of $\alpha$-stratified modules for finite-dimensional Lie algebras. I.J. Algebra 183 (1996), 456-482. Zbl 0869.17006, MR 1399036, 10.1006/jabr.1996.0229
Reference: [10] Kac, V. G.: Lie superalgebras.Adv. Math. 26 (1977), 8-96. Zbl 0366.17012, MR 0486011, 10.1016/0001-8708(77)90017-2
Reference: [11] Khomenko, A., Mazorchuk, V.: On the determinant of Shapovalov form for generalized Verma modules.J. Algebra 215 (1999), 318-329. Zbl 0931.17004, MR 1684154, 10.1006/jabr.1998.7731
Reference: [12] Khomenko, O., Mazorchuk, V.: Generalized Verma modules induced from $sl(2,\Bbb C)$ and associated Verma modules.J. Algebra 242 (2001), 561-576. Zbl 0982.17003, MR 1848960, 10.1006/jabr.2001.8815
Reference: [13] Mazorchuk, V.: On the structure of an $\alpha$-stratified generalized Verma module over Lie algebra $sl(n,\mathbb C)$.Manuscr. Math. 88 (1995), 59-72. Zbl 0855.17003, MR 1348790, 10.1007/BF02567805
Reference: [14] Mazorchuk, V. S., Ovsienko, S. A.: Submodule structure of generalized Verma modules induced from generic Gelfand-Zetlin modules.Algebr. Represent. Theory 1 (1998), 3-26. Zbl 0908.17004, MR 1654598, 10.1023/A:1009929615175
Reference: [15] Ross, L. E.: Representations of graded Lie algebras.Trans. Am. Math. Soc. 120 (1965), 17-23. Zbl 0145.25903, MR 0185043, 10.2307/1994163
Reference: [16] Scheunert, M.: The Theory of Lie Superalgebras. An Introduction.Lecture Notes in Mathematics 716, Springer, Berlin (1979). Zbl 0407.17001, MR 0537441, 10.1007/bfb0070929
Reference: [17] Shen, G.: Graded modules of graded Lie algebras of Cartan type. I: Mixed products of modules.Sci. Sin., Ser. A 29 (1986), 570-581. Zbl 0601.17013, MR 0862418
Reference: [18] Shen, G.: Graded modules of graded Lie algebras of Cartan type. II: Positive and negative graded modules.Sci. Sin., Ser. A 29 (1986), 1009-1019. Zbl 0615.17009, MR 0877285
Reference: [19] Shen, G.: Graded modules of graded Lie algebras of Cartan type. III: Irreducible modules.Chin. Ann. Math., Ser. B 9 (1988), 404-417. Zbl 0689.17011, MR 0998646
Reference: [20] Verma, D.-N.: Structure of certain induced representations of complex semisimple Lie algebras.Bull. Am. Math. Soc. 74 (1968), 160-166 errata ibid. 74 1968 628. Zbl 0157.07604, MR 0218417, 10.1090/S0002-9904-1968-11921-4
Reference: [21] Wang, Y., Zhang, Y.: Derivation algebra $ Der(H)$ and central extensions of Lie superalgebras.Commun. Algebra 32 (2004), 4117-4131. Zbl 1084.17009, MR 2097451, 10.1081/AGB-200029706
Reference: [22] Zhang, Y.: Graded modules of the Cartan-type $\bold Z$-graded Lie superalgebras $W(n)$ and $S(n)$.Kexue Tongbao 40 (1995), 1829-1832 Chinese. MR 1396205
Reference: [23] Zhang, Y.: $\mathbb Z$-graded module of Lie superalgebra $H(n)$ of Cartan type.Chin. Sci. Bull. 41 (1996), 813-817. Zbl 0859.17018, MR 1403021
Reference: [24] Zhang, Y.: Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic.Chin. Sci. Bull. 42 (1997), 720-724. Zbl 0886.17022, MR 1460613, 10.1007/BF03186962
Reference: [25] Zhang, Y.: Mixed products of modules of infinite-dimensional Lie superalgebras of Cartan type.Chin. Ann. Math., Ser. A 18 (1997), 725-732. Zbl 0919.17004, MR 1620790
Reference: [26] Zhang, Y., Fu, H.: Finite-dimensional Hamiltonian Lie superalgebra.Commun. Algebra 30 (2002), 2651-2673. Zbl 1021.17017, MR 1908231, 10.1081/AGB-120003981
.

Files

Files Size Format View
CzechMathJ_67-2017-3_6.pdf 348.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo