Previous |  Up |  Next

Article

Title: Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces (English)
Author: Liu, Yi
Author: Yuan, Wen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 3
Year: 2017
Pages: 715-732
Summary lang: English
.
Category: math
.
Summary: Let $\theta \in (0,1)$, $\lambda \in [0,1)$ and $p,p_0,p_1\in (1,\infty ]$ be such that ${(1-\theta )}/{p_{0}}+{\theta }/{p_{1}}={1}/{p}$, and let $\varphi , \varphi _0, \varphi _1 $ be some admissible functions such that $\varphi , \varphi _0^{{p}/{p_0}}$ and $\varphi _1^{{p}/{p_1}}$ are equivalent. We first prove that, via the $\pm $ interpolation method, the interpolation $\langle L^{p_0),\lambda }_{\varphi _0}(\mathcal {X}), L^{p_1),\lambda }_{\varphi _1}(\mathcal {X}), \theta \rangle $ of two generalized grand Morrey spaces on a quasi-metric measure space $\mathcal {X}$ is the generalized grand Morrey space $L^{p),\lambda }_{\varphi }(\mathcal {X})$. Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces. (English)
Keyword: grand Lebesgue space
Keyword: grand Morrey space
Keyword: Gagliardo-Peetre method
Keyword: quasi-metric measure space
Keyword: Calderón product
Keyword: predual space
Keyword: $\pm $ interpolation method
MSC: 46B10
MSC: 46B70
idZBL: Zbl 06770125
idMR: MR3697911
DOI: 10.21136/CMJ.2017.0081-16
.
Date available: 2017-09-01T12:22:38Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146854
.
Reference: [1] Adams, D. R., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities.Indiana Univ. Math. J. 53 (2004), 1629-1663. Zbl 1100.31009, MR 2106339, 10.1512/iumj.2004.53.2470
Reference: [2] Adams, D. R., Xiao, J.: Morrey spaces in harmonic analysis.Ark. Mat. 50 (2012), 201-230. Zbl 1254.31009, MR 2961318, 10.1007/s11512-010-0134-0
Reference: [3] Anatriello, G.: Iterated grand and small Lebesgue spaces.Collect. Math. 65 (2014), 273-284. Zbl 1321.46029, MR 3189282, 10.1007/s13348-013-0096-1
Reference: [4] Blasco, O., Ruiz, A., Vega, L.: Non interpolation in Morrey-Campanato and block spaces.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 31-40. Zbl 0955.46013, MR 1679077
Reference: [5] Campanato, S., Murthy, M. K. V.: Una generalizzazione del teorema di Riesz-Thorin.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 19 (1965), 87-100 Italian. Zbl 0145.16301, MR 0180860
Reference: [6] Capone, C., Formica, M. R., Giova, R.: Grand Lebesgue spaces with respect to measurable functions.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 85 (2013), 125-131. Zbl 1286.46030, MR 3040353, 10.1016/j.na.2013.02.021
Reference: [7] Fiorenza, A.: Duality and reflexivity in grand Lebesgue spaces.Collect. Math. 51 (2000), 131-148. Zbl 0960.46022, MR 1776829
Reference: [8] Fiorenza, A., Gupta, B., Jain, P.: The maximal theorem for weighted grand Lebesgue spaces.Stud. Math. 188 (2008), 123-133. Zbl 1161.42011, MR 2430998, 10.4064/sm188-2-2
Reference: [9] Fiorenza, A., Karadzhov, G. E.: Grand and small Lebesgue spaces and their analogs.Z. Anal. Anwend. 23 (2004), 657-681. Zbl 1071.46023, MR 2110397, 10.4171/ZAA/1215
Reference: [10] Fiorenza, A., Krbec, M.: On the domain and range of the maximal operator.Nagoya Math. J. 158 (2000), 43-61. Zbl 1039.42015, MR 1766576, 10.1017/s0027763000007285
Reference: [11] Fiorenza, A., Mercaldo, A., Rakotoson, J. M.: Regularity and comparison results in grand Sobolev spaces for parabolic equations with measure data.Appl. Math. Lett. 14 (2001), 979-981. Zbl 0983.35067, MR 1855941, 10.1016/S0893-9659(01)00075-1
Reference: [12] Fiorenza, A., Mercaldo, A., Rakotoson, J. M.: Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data.Discrete Contin. Dyn. Syst. 8 (2002), 893-906. Zbl 1007.35034, MR 1920650, 10.3934/dcds.2002.8.893
Reference: [13] Fiorenza, A., Sbordone, C.: Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$.Stud. Math. 127 (1998), 223-231. Zbl 0891.35039, MR 1489454
Reference: [14] Futamura, T., Mizuta, Y., Ohno, T.: Sobolev's theorem for Riesz potentials of functions in grand Morrey spaces of variable exponent.Proc. 4th Int. Symposium on Banach and Function Spaces, Kitakyushu, 2012 M. Kato et al. Yokohama Publishers, Yokohama (2014), 353-365. Zbl 1332.31007, MR 3289785
Reference: [15] Greco, L., Iwaniec, T., Sbordone, C.: Inverting the $p$-harmonic operator.Manuscr. Math. 92 (1997), 249-258. Zbl 0869.35037, MR 1428651, 10.1007/BF02678192
Reference: [16] Gustavsson, J.: On interpolation of weighted $L^p$-spaces and Ovchinnikov's theorem.Stud. Math. 72 (1982), 237-251. Zbl 0497.46051, MR 0671399, 10.4064/sm-72-3-237-251
Reference: [17] Gustavsson, J., Peetre, J.: Interpolation of Orlicz spaces.Stud. Math. 60 (1977), 33-59. Zbl 0353.46019, MR 0438102, 10.4064/sm-60-1-33-59
Reference: [18] Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypotheses.Arch. Ration. Mech. Anal. 119 (1992), 129-143. Zbl 0766.46016, MR 1176362, 10.1007/BF00375119
Reference: [19] Iwaniec, T., Sbordone, C.: Riesz transforms and elliptic PDEs with VMO coefficients.J. Anal. Math. 74 (1998), 183-212. Zbl 0909.35039, MR 1631658, 10.1007/BF02819450
Reference: [20] Kokilashvili, V., Meskhi, A., Rafeiro, H.: Boundedness of commutators of singular and potential operators in generalized grand Morrey spaces and some applications.Stud. Math. 217 (2013), 159-178. Zbl 1292.42009, MR 3117336, 10.4064/sm217-2-4
Reference: [21] Kokilashvili, V., Meskhi, A., Rafeiro, H.: Riesz type potential operators in generalized grand Morrey spaces.Georgian Math. J. 20 (2013), 43-64. Zbl 1280.46017, MR 3037076, 10.1515/gmj-2013-0009
Reference: [22] Kokilashvili, V., Meskhi, A., Rafeiro, H.: Estimates for nondivergence elliptic equations with VMO coefficients in generalized grand Morrey spaces.Complex Var. Elliptic Equ. 59 (2014), 1169-1184. Zbl 1290.35285, MR 3197041, 10.1080/17476933.2013.831844
Reference: [23] Lemarié-Rieusset, P. G.: Multipliers and Morrey spaces.Potential Anal. 38 (2013), 741-752 erratum ibid. 41 2014 1359-1362. Zbl 1267.42024, MR 3034598, 10.1007/s11118-012-9295-8
Reference: [24] Lu, Y., Yang, D., Yuan, W.: Interpolation of Morrey spaces on metric measure spaces.Can. Math. Bull. 57 (2014), 598-608. Zbl 1316.46021, MR 3239123, 10.4153/CMB-2013-009-4
Reference: [25] Meskhi, A.: Maximal functions and singular integrals in Morrey spaces associated with grand Lebesgue spaces.Proc. A. Razmadze Math. Inst. 151 (2009), 139-143. Zbl 1194.42024, MR 2584418
Reference: [26] Meskhi, A.: Maximal functions, potentials and singular integrals in grand Morrey spaces.Complex Var. Elliptic Equ. 56 (2011), 1003-1019. Zbl 1261.42022, MR 2838234, 10.1080/17476933.2010.534793
Reference: [27] Mizuta, Y., Ohno, T.: Trudinger's exponential integrability for Riesz potentials of functions in generalized grand Morrey spaces.J. Math. Anal. Appl. 420 (2014), 268-278. Zbl 1305.42017, MR 3229824, 10.1016/j.jmaa.2014.05.082
Reference: [28] C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations.Trans. Am. Math. Soc. 43 (1938), 126-166. Zbl 0018.40501, MR 1501936, 10.2307/1989904
Reference: [29] Nilsson, P.: Interpolation of Banach lattices.Stud. Math. 82 (1985), 135-154. Zbl 0549.46038, MR 0823972, 10.4064/sm-82-2-135-154
Reference: [30] Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces.Czech. Math. J. 64 (2014), 209-228. Zbl 1340.31009, MR 3247456, 10.1007/s10587-014-0095-8
Reference: [31] Peetre, J.: On the theory of $\mathcal L_{p,\lambda}$ spaces.J. Funct. Anal. 4 (1969), 71-87. Zbl 0175.42602, MR 0241965, 10.1016/0022-1236(69)90022-6
Reference: [32] Peetre, J.: Sur l'utilisation des suites inconditionellement sommables dans la théorie des espaces d'interpolation.Rend. Sem. Mat. Univ. Padova 46 (1971), 173-190 French. Zbl 0233.46047, MR 0308811
Reference: [33] Ruiz, A., Vega, L.: Corrigenda to ``Unique continuation for Schrödinger operators'' and a remark on interpolation of Morrey spaces.Publ. Mat., Barc. 39 (1995), 405-411. Zbl 0849.47022, MR 1370896, 10.5565/PUBLMAT_39295_15
Reference: [34] Sawano, Y., Tanaka, H.: Morrey spaces for non-doubling measures.Acta Math. Sin., Engl. Ser. 21 (2005), 1535-1544. Zbl 1129.42403, MR 2190025, 10.1007/s10114-005-0660-z
Reference: [35] Sawano, Y., Tanaka, H.: Predual spaces of Morrey spaces with non-doubling measures.Tokyo J. Math. 32 (2009), 471-486. Zbl 1193.42094, MR 2589957, 10.3836/tjm/1264170244
Reference: [36] Sbordone, C.: Grand Sobolev spaces and their applications to variational problems.Matematiche 51 (1996), 335-347. Zbl 0915.46030, MR 1488076
Reference: [37] Stampacchia, G.: $\mathcal L^{(p,\lambda)}$-spaces and interpolation.Commun. Pure Appl. Math. 17 (1964), 293-306. Zbl 0149.09201, MR 0178350, 10.1002/cpa.3160170303
Reference: [38] Ye, X.: Boundedness of commutators of singular and potential operators in grand Morrey spaces.Acta Math. Sin., Chin. Ser. 54 (2011), 343-352 Chinese. Zbl 1240.42085, MR 2830303
Reference: [39] Yuan, W., Sickel, W., Yang, D.: Interpolation of Morrey-Campanato and related smoothness spaces.Sci. China, Math. 58 (2015), 1835-1908. Zbl 1337.46030, MR 3383989, 10.1007/s11425-015-5047-8
Reference: [40] Zorko, C. T.: Morrey space.Proc. Am. Math. Soc. 98 (1986), 586-592. Zbl 0612.43003, MR 0861756, 10.2307/2045731
.

Files

Files Size Format View
CzechMathJ_67-2017-3_7.pdf 364.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo