Title:
|
Cofiniteness and finiteness of local cohomology modules over regular local rings (English) |
Author:
|
A'zami, Jafar |
Author:
|
Pourreza, Naser |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
3 |
Year:
|
2017 |
Pages:
|
733-740 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(R,\mathfrak m)$ be a commutative Noetherian regular local ring of dimension $d$ and $I$ be a proper ideal of $R$ such that ${\rm mAss}_R(R/I)={\rm Assh}_R(I)$. It is shown that the $R$-module $H^{{\rm ht}(I)}_I(R)$ is $I$-cofinite if and only if ${\rm cd}(I,R)={\rm ht}(I)$. Also we present a sufficient condition under which this condition the $R$-module $H^i_I(R)$ is finitely generated if and only if it vanishes. (English) |
Keyword:
|
cofinite module |
Keyword:
|
Cohen-Macaulay ring |
Keyword:
|
Krull dimension |
Keyword:
|
local cohomology |
Keyword:
|
regular ring |
MSC:
|
13D45 |
MSC:
|
13E05 |
MSC:
|
14B15 |
idZBL:
|
Zbl 06770126 |
idMR:
|
MR3697912 |
DOI:
|
10.21136/CMJ.2017.0116-16 |
. |
Date available:
|
2017-09-01T12:23:03Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146855 |
. |
Reference:
|
[1] Bagheriyeh, I., Bahmanpour, K., A'zami, J.: Cofiniteness and non-vanishing of local cohomology modules.J. Commut. Algebra 6 (2014), 305-321. Zbl 1299.13019, MR 3278806, 10.1216/JCA-2014-6-3-305 |
Reference:
|
[2] Bahmanpour, K.: Annihilators of local cohomology modules.Commun. Algebra 43 (2015), 2509-2515. Zbl 1323.13003, MR 3344203, 10.1080/00927872.2014.900687 |
Reference:
|
[3] Bahmanpour, K., A'zami, J., Ghasemi, G.: On the annihilators of local cohomology modules.J. Algebra 363 (2012), 8-13. Zbl 1262.13027, MR 2925842, 10.1016/j.jalgebra.2012.03.026 |
Reference:
|
[4] Bahmanpour, K., Naghipour, R.: Associated primes of local cohomology modules and Matlis duality.J. Algebra 320 (2008), 2632-2641. Zbl 1149.13008, MR 2441778, 10.1016/j.jalgebra.2008.05.014 |
Reference:
|
[5] Bahmanpour, K., Naghipour, R.: Cofiniteness of local cohomology modules for ideals of small dimension.J. Algebra 321 (2009), 1997-2011. Zbl 1168.13016, MR 2494753, 10.1016/j.jalgebra.2008.12.020 |
Reference:
|
[6] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627, 10.1017/CBO9780511629204 |
Reference:
|
[7] Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz loceaux et globeaux (SGA 2).Séminaire de Géométrie Algébrique du Bois-Marie, 1962, Advanced Studies in Pure Mathematics 2, North-Holland Publishing Company, Amsterdam; Masson & Cie, Éditeur, Paris (1968), French. Zbl 0197.47202, MR 0476737 |
Reference:
|
[8] Hartshorne, R.: Affine duality and cofiniteness.Invent. Math. 9 (1970), 145-164. Zbl 0196.24301, MR 0257096, 10.1007/BF01404554 |
Reference:
|
[9] Hellus, M.: On the set of associated primes of a local cohomology module.J. Algebra 237 (2001), 406-419. Zbl 1027.13009, MR 1813886, 10.1006/jabr.2000.8580 |
Reference:
|
[10] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules.Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. Zbl 0749.13007, MR 1120477, 10.1017/S0305004100070493 |
Reference:
|
[11] Khashyarmanesh, K.: On the finiteness properties of extension and torsion functors of local cohomology modules.Proc. Am. Math. Soc. 135 (2007), 1319-1327. Zbl 1111.13016, MR 2276640, 10.1090/S0002-9939-06-08664-3 |
Reference:
|
[12] Khashyarmanesh, K., Salarian, Sh.: Filter regular sequences and the finiteness of local cohomology modules.Commun. Algebra 26 (1998), 2483-2490. Zbl 0909.13007, MR 1627876, 10.1080/00927879808826293 |
Reference:
|
[13] Melkersson, L.: Modules cofinite with respect to an ideal.J. Algebra 285 (2005), 649-668. Zbl 1093.13012, MR 2125457, 10.1016/j.jalgebra.2004.08.037 |
Reference:
|
[14] Schenzel, P.: Proregular sequences, local cohomology, and completion.Math. Scand. 92 (2003), 161-180. Zbl 1023.13011, MR 1973941, 10.7146/math.scand.a-14399 |
. |