Previous |  Up |  Next

Article

Title: Cofiniteness and finiteness of local cohomology modules over regular local rings (English)
Author: A'zami, Jafar
Author: Pourreza, Naser
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 3
Year: 2017
Pages: 733-740
Summary lang: English
.
Category: math
.
Summary: Let $(R,\mathfrak m)$ be a commutative Noetherian regular local ring of dimension $d$ and $I$ be a proper ideal of $R$ such that ${\rm mAss}_R(R/I)={\rm Assh}_R(I)$. It is shown that the $R$-module $H^{{\rm ht}(I)}_I(R)$ is $I$-cofinite if and only if ${\rm cd}(I,R)={\rm ht}(I)$. Also we present a sufficient condition under which this condition the $R$-module $H^i_I(R)$ is finitely generated if and only if it vanishes. (English)
Keyword: cofinite module
Keyword: Cohen-Macaulay ring
Keyword: Krull dimension
Keyword: local cohomology
Keyword: regular ring
MSC: 13D45
MSC: 13E05
MSC: 14B15
idZBL: Zbl 06770126
idMR: MR3697912
DOI: 10.21136/CMJ.2017.0116-16
.
Date available: 2017-09-01T12:23:03Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146855
.
Reference: [1] Bagheriyeh, I., Bahmanpour, K., A'zami, J.: Cofiniteness and non-vanishing of local cohomology modules.J. Commut. Algebra 6 (2014), 305-321. Zbl 1299.13019, MR 3278806, 10.1216/JCA-2014-6-3-305
Reference: [2] Bahmanpour, K.: Annihilators of local cohomology modules.Commun. Algebra 43 (2015), 2509-2515. Zbl 1323.13003, MR 3344203, 10.1080/00927872.2014.900687
Reference: [3] Bahmanpour, K., A'zami, J., Ghasemi, G.: On the annihilators of local cohomology modules.J. Algebra 363 (2012), 8-13. Zbl 1262.13027, MR 2925842, 10.1016/j.jalgebra.2012.03.026
Reference: [4] Bahmanpour, K., Naghipour, R.: Associated primes of local cohomology modules and Matlis duality.J. Algebra 320 (2008), 2632-2641. Zbl 1149.13008, MR 2441778, 10.1016/j.jalgebra.2008.05.014
Reference: [5] Bahmanpour, K., Naghipour, R.: Cofiniteness of local cohomology modules for ideals of small dimension.J. Algebra 321 (2009), 1997-2011. Zbl 1168.13016, MR 2494753, 10.1016/j.jalgebra.2008.12.020
Reference: [6] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627, 10.1017/CBO9780511629204
Reference: [7] Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz loceaux et globeaux (SGA 2).Séminaire de Géométrie Algébrique du Bois-Marie, 1962, Advanced Studies in Pure Mathematics 2, North-Holland Publishing Company, Amsterdam; Masson & Cie, Éditeur, Paris (1968), French. Zbl 0197.47202, MR 0476737
Reference: [8] Hartshorne, R.: Affine duality and cofiniteness.Invent. Math. 9 (1970), 145-164. Zbl 0196.24301, MR 0257096, 10.1007/BF01404554
Reference: [9] Hellus, M.: On the set of associated primes of a local cohomology module.J. Algebra 237 (2001), 406-419. Zbl 1027.13009, MR 1813886, 10.1006/jabr.2000.8580
Reference: [10] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules.Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. Zbl 0749.13007, MR 1120477, 10.1017/S0305004100070493
Reference: [11] Khashyarmanesh, K.: On the finiteness properties of extension and torsion functors of local cohomology modules.Proc. Am. Math. Soc. 135 (2007), 1319-1327. Zbl 1111.13016, MR 2276640, 10.1090/S0002-9939-06-08664-3
Reference: [12] Khashyarmanesh, K., Salarian, Sh.: Filter regular sequences and the finiteness of local cohomology modules.Commun. Algebra 26 (1998), 2483-2490. Zbl 0909.13007, MR 1627876, 10.1080/00927879808826293
Reference: [13] Melkersson, L.: Modules cofinite with respect to an ideal.J. Algebra 285 (2005), 649-668. Zbl 1093.13012, MR 2125457, 10.1016/j.jalgebra.2004.08.037
Reference: [14] Schenzel, P.: Proregular sequences, local cohomology, and completion.Math. Scand. 92 (2003), 161-180. Zbl 1023.13011, MR 1973941, 10.7146/math.scand.a-14399
.

Files

Files Size Format View
CzechMathJ_67-2017-3_8.pdf 269.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo