Previous |  Up |  Next

Article

Title: A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis (English)
Author: Yuan, Hongfen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 3
Year: 2017
Pages: 795-808
Summary lang: English
.
Category: math
.
Summary: Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis. (English)
Keyword: super Dunkl-Dirac operator
Keyword: Stokes formula
Keyword: Cauchy-Pompeiu integral formula
Keyword: Morera's theorem
Keyword: Painlevé theorem
MSC: 26B20
MSC: 30G35
MSC: 58C50
idZBL: Zbl 06770131
idMR: MR3697917
DOI: 10.21136/CMJ.2017.0187-16
.
Date available: 2017-09-01T12:25:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146860
.
Reference: [1] Bernardes, G., Cerejeiras, P., Kähler, U.: Fischer decomposition and Cauchy kernel for Dunkl-Dirac operators.Adv. Appl. Clifford Algebr. 19 (2009), 163-171. Zbl 1172.30020, MR 2524663, 10.1007/s00006-009-0151-x
Reference: [2] Cerejeiras, P., Kähler, U., Ren, G.: Clifford analysis for finite reflection groups.Complex Var. Elliptic Equ. 51 (2006), 487-495. Zbl 1115.30053, MR 2230262, 10.1080/17476930500482499
Reference: [3] Coulembier, K., Bie, H. De, Sommen, F.: Integration in superspace using distribution theory.J. Phys. A, Math. Theor. 42 (2009), Article ID 395206, 23 pages. Zbl 1187.58011, MR 2539324, 10.1088/1751-8113/42/39/395206
Reference: [4] Bie, H. De, Schepper, N. De: Clifford-Gegenbauer polynomials related to the Dunkl Dirac operator.Bull. Belg. Math. Soc.-Simon Stevin 18 (2011), 193-214. Zbl 1227.30038, MR 2847756, 10.36045/bbms/1307452070
Reference: [5] Bie, H. De, Sommen, F.: Correct rules for Clifford calculus on superspace.Adv. Appl. Clifford Algebr. 17 (2007), 357-382. Zbl 1129.30034, MR 2350585, 10.1007/s00006-007-0042-y
Reference: [6] Bie, H. De, Sommen, F.: Spherical harmonics and integration in superspace.J. Phys. A, Math. Theor. 40 (2007), 7193-7212. Zbl 1143.30315, MR 2344451, 10.1088/1751-8113/40/26/007
Reference: [7] Dunkl, C. F.: Differential-difference operators associated to reflection groups.Trans. Am. Math. Soc. 311 (1989), 167-183. Zbl 0652.33004, MR 0951883, 10.2307/2001022
Reference: [8] Dunkl, C. F., Xu, Y.: Orthogonal Polynomials of Several Variables.Encyclopedia of Mathematics and Its Applications 81, Cambridge University Press, Cambridge (2001). Zbl 0964.33001, MR 1827871, 10.1017/CBO9780511565717
Reference: [9] Fei, M. G.: Fundamental solutions of iterated Dunkl-Dirac operators and their applications.Acta Math. Sci. Ser. A, Chin. Ed. 33 (2013), 1052-1061 Chinese. Zbl 1313.33013, MR 3184906
Reference: [10] Fei, M., Cerejeiras, P., Kähler, U.: Fueter's theorem and its generalizations in Dunkl-Clifford analysis.J. Phys. A, Math. Theor. 42 (2009), Article ID 395209, 15 pages. Zbl 1230.30033, MR 2539327, 10.1088/1751-8113/42/39/395209
Reference: [11] Fei, M., Cerejeiras, P., Kähler, U.: Spherical Dunkl-monogenics and a factorization of the Dunkl-Laplacian.J. Phys. A, Math. Theor. 43 (2010), Article ID 445202, 14 pages. Zbl 1203.30054, MR 2733821, 10.1088/1751-8113/43/44/445202
Reference: [12] Heckman, G. J.: Dunkl operators.Séminaire Bourbaki, Volume 1996/97. Exposés 820-834. Société Mathématique de France, Astérisque 245 (1997), 223-246. Zbl 0916.33012, MR 1627113
Reference: [13] Humphreys, J. E.: Reflection Groups and Coxeter Groups.Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge (1990). Zbl 0725.20028, MR 1066460, 10.1017/CBO9780511623646
Reference: [14] Ren, G.: Howe duality in Dunkl superspace.Sci. China, Math. 53 (2010), 3153-3162. Zbl 1213.30087, MR 2746313, 10.1007/s11425-010-4063-y
Reference: [15] Trimèche, K.: Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators.Integral Transforms Spec. Funct. 13 (2002), 17-38. Zbl 1030.44004, MR 1914125, 10.1080/10652460212888
Reference: [16] Diejen, J. F. Van, (eds.), L. Vinet: Calogero-Moser-Sutherland Models.Workshop, Centre de Recherches Mathématique, Montréal, 1997. CRM Series in Mathematical Physics, Springer, New York (2000). Zbl 0942.00063, MR 1843558, 10.1007/978-1-4612-1206-5
Reference: [17] Yuan, H. F., Karachik, V. V.: Dunkl-Poisson equation and related equations in superspace.Math. Model. Anal. 20 (2015), 768-781. MR 3427166, 10.3846/13926292.2015.1112856
Reference: [18] Yuan, H., Qiao, Y., Yang, H.: Properties of $k$-monogenic functions and their relative functions in superspace.Adv. Math., Beijing 42 (2013), 233-242 Chinese. Zbl 1299.30132, MR 3112909
Reference: [19] Yuan, H., Zhang, Z., Qiao, Y.: Polynomial Dirac operators in superspace.Adv. Appl. Clifford Algebr. 25 (2015), 755-769. Zbl 1325.35008, MR 3384860, 10.1007/s00006-014-0524-7
.

Files

Files Size Format View
CzechMathJ_67-2017-3_13.pdf 309.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo