Previous |  Up |  Next

Article

Title: On soluble groups of module automorphisms of finite rank (English)
Author: Wehrfritz, Bertram A. F.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 3
Year: 2017
Pages: 809-818
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring, $M$ an $R$-module and $G$ a group of $R$-automorphisms of $M$, usually with some sort of rank restriction on $G$. We study the transfer of hypotheses between $M/C_{M}(G)$ and $[M,G]$ such as Noetherian or having finite composition length. In this we extend recent work of Dixon, Kurdachenko and Otal and of Kurdachenko, Subbotin and Chupordia. For example, suppose $[M,G]$ is $R$-Noetherian. If $G$ has finite rank, then $M/C_{M}(G)$ also is $R$-Noetherian. Further, if $[M,G]$ is $R$-Noetherian and if only certain abelian sections of $G$ have finite rank, then $G$ has finite rank and is soluble-by-finite. If $M/C_{M}(G)$ is $R$-Noetherian and $G$ has finite rank, then $[M,G]$ need not be $R$-Noetherian. (English)
Keyword: soluble group
Keyword: finite rank
Keyword: module automorphisms
Keyword: Noetherian module over commutative ring
MSC: 13E05
MSC: 20C07
MSC: 20F16
MSC: 20H99
idZBL: Zbl 06770132
idMR: MR3697918
DOI: 10.21136/CMJ.2017.0193-16
.
Date available: 2017-09-01T12:25:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146861
.
Reference: [1] Brauer, R., Feit, W.: An analogue of Jordan's theorem in characteristic $p$.Ann. Math. (2) 84 (1966), 119-131. Zbl 0142.26203, MR 0200350, 10.2307/1970514
Reference: [2] Dixon, M. R., Kurdachenko, L. A., Otal, J.: Linear analogues of theorems of Schur, Baer and Hall.Int. J. Group Theory 2 (2013), 79-89. Zbl 1306.20055, MR 3033535
Reference: [3] Kurdachenko, L. A., Subbotin, I. Ya., Chupordia, V. A.: On the relations between the central factor-module and the derived submodule in modules over group rings.Commentat. Math. Univ. Carol. 56 (2015), 433-445. Zbl 1345.20008, MR 3434223, 10.14712/1213-7243.2015.136
Reference: [4] McConnell, J. C., Robson, J. C.: Noncommutative Noetherian Rings. With the Cooperation of L. W. Small.Pure and Applied Mathematics. A Wiley-Interscience Publication, John Wiley & Sons, Chichester (1987). Zbl 0644.16008, MR 0934572
Reference: [5] Wehrfritz, B. A. F.: Infinite Linear Groups. An Account of the Group-Theoretic Properties of Infinite Groups of Matrices.Ergebnisse der Mathematik und ihrer Grenzgebiete 76, Springer, Berlin (1973). Zbl 0261.20038, MR 0335656, 10.1007/978-3-642-87081-1
Reference: [6] Wehrfritz, B. A. F.: Automorphism groups of Noetherian modules over commutative rings.Arch. Math. 27 (1976), 276-281. Zbl 0333.13009, MR 0409615, 10.1007/BF01224671
Reference: [7] Wehrfritz, B. A. F.: On the Lie-Kolchin-Mal'cev theorem.J. Aust. Math. Soc., Ser. A 26 (1978), 270-276. Zbl 0392.20026, MR 0515743, 10.1017/S1446788700011782
Reference: [8] Wehrfritz, B. A. F.: Lectures around Complete Local Rings.Queen Mary College Mathematics Notes, London (1979). MR 0550883
Reference: [9] Wehrfritz, B. A. F.: Group and Ring Theoretic Properties of Polycyclic Groups.Algebra and Applications 10, Springer, Dordrecht (2009). Zbl 1206.20042, MR 2561933, 10.1007/978-1-84882-941-1
.

Files

Files Size Format View
CzechMathJ_67-2017-3_14.pdf 276.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo