Title:
|
Characterizing projective general unitary groups ${\rm PGU}_3(q^2)$ by their complex group algebras (English) |
Author:
|
Shirjian, Farrokh |
Author:
|
Iranmanesh, Ali |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
3 |
Year:
|
2017 |
Pages:
|
819-826 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a finite group. Let $X_1(G)$ be the first column of the ordinary character table of $G$. We will show that if $X_1(G)=X_1({\rm PGU}_3(q^2))$, then $G \cong {\rm PGU}_3(q^2)$. As a consequence, we show that the projective general unitary groups ${\rm PGU}_3(q^2)$ are uniquely determined by the structure of their complex group algebras. (English) |
Keyword:
|
character degree |
Keyword:
|
complex group algebra |
Keyword:
|
projective general unitary group |
MSC:
|
20C15 |
MSC:
|
20G40 |
idZBL:
|
Zbl 06770133 |
idMR:
|
MR3697919 |
DOI:
|
10.21136/CMJ.2017.0194-16 |
. |
Date available:
|
2017-09-01T12:26:46Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146862 |
. |
Reference:
|
[1] Berkovich, Y. G., Zhmud', E. M.: Characters of Finite Groups. Part 1.Translations of Mathematical Monographs 172, American Mathematical Society, Providence (1998). Zbl 0934.20008, MR 1486039 |
Reference:
|
[2] Bessenrodt, C., Nguyen, H. N., Olsson, J. B., Tong-Viet, H. P.: Complex group algebras of the double covers of the symmetric and alternating groups.Algebra Number Theory 9 (2015), 601-628. Zbl 1321.20011, MR 3340546, 10.2140/ant.2015.9.601 |
Reference:
|
[3] Brauer, R.: Representations of finite groups.Lect. Modern Math. 1 (1963), 133-175. Zbl 0124.26504, MR 0178056 |
Reference:
|
[4] Carter, R. W.: Finite Groups of Lie Type. Conjugacy Classes and Complex Characters.Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Chichester (1993). Zbl 0567.20023, MR 1266626 |
Reference:
|
[5] Dolfi, S., Navarro, G., Tiep, P. H.: Primes dividing the degrees of the real characters.Math. Z. 259 (2008), 755-774. Zbl 1149.20006, MR 2403740, 10.1007/s00209-007-0247-8 |
Reference:
|
[6] Gorenstein, D., Lyons, R., Solomon, R.: The Classification of the Finite Simple Groups. Part I. Chapter A: Almost Simple $K$-Groups.Mathematical Surveys and Monographs 40, American Mathematical Society, Providence (1998). Zbl 0890.20012, MR 1490581 |
Reference:
|
[7] Heydari, S., Ahanjideh, N.: A characterization of $ PGL(2,p^n)$ by some irreducible complex character degrees.Publ. Inst. Math., Nouv. Sér. 99 (2016), 257-264. Zbl 06749629, MR 3524049, 10.2298/PIM150111017H |
Reference:
|
[8] Huppert, B.: Some simple groups, which are determined by the set of their character degrees III.Preprint. MR 1804317 |
Reference:
|
[9] Kimmerle, W.: Group rings of finite simple groups.Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 261-278. Zbl 1047.20007, MR 2015338 |
Reference:
|
[10] Lewis, M. L.: Solvable groups whose degree graphs have two connected components.J. Group Theory 4 (2001), 255-275. Zbl 0998.20009, MR 1839998, 10.1515/jgth.2001.023 |
Reference:
|
[11] Lübeck, F.: Data for finite groups of Lie type and related algebraic groups.Available at http://www.math.rwth-aachen.de/$\sim$Frank.Luebeck/chev/index.html. |
Reference:
|
[12] Malle, G., Testerman, D.: Linear Algebraic Groups and Finite groups of Lie Type.Cambridge Studies in Advanced Mathematics 133, Cambridge University Press, Cambridge (2011). Zbl 1256.20045, MR 2850737, 10.1017/CBO9780511994777 |
Reference:
|
[13] Meng, Q., Zeng, J.: Finite groups whose character degree graphs are empty graphs.Algebra Colloq. 20 (2013), 75-80. Zbl 1280.20009, MR 3020718, 10.1142/S1005386713000060 |
Reference:
|
[14] Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra.Stuttgarter Mathematische Berichte (2011), German Available at http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-007.pdf. |
Reference:
|
[15] Nguyen, H. N.: Quasisimple classical groups and their complex group algebras.Isr. J. Math. 195 (2013), 973-998. Zbl 1294.20004, MR 3096579, 10.1007/s11856-012-0142-9 |
Reference:
|
[16] Nguyen, H. N., Tong-Viet, H. P.: Characterizing finite quasisimple groups by their complex group algebras.Algebr. Represent. Theory 17 (2014), 305-320. Zbl 1303.20001, MR 3160726, 10.1007/s10468-012-9400-0 |
Reference:
|
[17] Shirjian, F., Iranmanesh, A.: Complex group algebras of almost simple groups with socle $PSL_n(q)$.To appear in Commun. Algebra. 10.1080/00927872.2017.1324868 |
Reference:
|
[18] Simpson, W. A., Frame, J. S.: The character tables for $ SL(3,q)$, $ SU(3,q^2)$, $ PSL(3,q)$, $ PSU(3,q^2)$.Can. J. Math. 25 (1973), 486-494. Zbl 0264.20010, MR 0335618, 10.4153/CJM-1973-049-7 |
Reference:
|
[19] Tong-Viet, H. P.: Symmetric groups are determined by their character degrees.J. Algebra 334 (2011), 275-284. Zbl 1246.20007, MR 2787664, 10.1016/j.jalgebra.2010.11.018 |
Reference:
|
[20] Tong-Viet, H. P.: Alternating and sporadic simple groups are determined by their character degrees.Algebr. Represent. Theory 15 (2012), 379-389. Zbl 1252.20005, MR 2892513, 10.1007/s10468-010-9247-1 |
Reference:
|
[21] Tong-Viet, H. P.: Simple classical groups of Lie type are determined by their character degrees.J. Algebra 357 (2012), 61-68. Zbl 1259.20008, MR 2905242, 10.1016/j.jalgebra.2012.02.011 |
Reference:
|
[22] Tong-Viet, H. P.: Simple exceptional groups of Lie type are determined by their character degrees.Monatsh. Math. 166 (2012), 559-577. Zbl 1255.20006, MR 2925155, 10.1007/s00605-011-0301-9 |
Reference:
|
[23] Wakefield, T. P.: Verifying Huppert's conjecture for $ PSL_3(q)$ and $ PSU_3(q^2)$.Commun. Algebra 37 (2009), 2887-2906. Zbl 1185.20014, MR 2543522, 10.1080/00927870802625661 |
Reference:
|
[24] Zsigmondy, K.: On the theory of power residues.Monatsh. Math. Phys. 3 (1892), 265-284 German \99999JFM99999 24.0176.02. MR 1546236, 10.1007/BF01692444 |
. |