Previous |  Up |  Next

Article

Title: On the proof of Erdős' inequality (English)
Author: Zhu, Lai-Yi
Author: Zhou, Da-Peng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 4
Year: 2017
Pages: 967-979
Summary lang: English
.
Category: math
.
Summary: Using undergraduate calculus, we give a direct elementary proof of a sharp Markov-type inequality $\|p'\|_{[-1,1]}\leq \frac 12\|p\|_{[-1,1]}$ for a constrained polynomial $p$ of degree at most $n$, initially claimed by P. Erd\H os, which is different from the one in the paper of T. Erdélyi (2015). Whereafter, we give the situations on which the equality holds. On the basis of this inequality, we study the monotone polynomial which has only real zeros all but one outside of the interval $(-1,1)$ and establish a new asymptotically sharp inequality. (English)
Keyword: polynomial
Keyword: Erd\H os' inequality
Keyword: undergraduate calculus
Keyword: monotone polynomial
MSC: 26D05
MSC: 41A17
MSC: 42A05
idZBL: Zbl 06819566
idMR: MR3736012
DOI: 10.21136/CMJ.2017.0256-16
.
Date available: 2017-11-20T14:53:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146960
.
Reference: [1] Ankeny, N. C., Rivlin, T. J.: On a theorem of S. Bernstern.Pac. J. Math., Suppl. II 5 (1955), 849-852. Zbl 0067.01001, MR 0076020, 10.2140/pjm.1955.5.849
Reference: [2] Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities.Graduate Texts in Mathematics 161, Springer, New York (1995). Zbl 0840.26002, MR 1367960, 10.1007/978-1-4612-0793-1
Reference: [3] DeVore, R. A., Lorentz, G. G.: Constructive Approximation.Grundlehren der Mathematischen Wissenschaften 303, Springer, Berlin (1993). Zbl 0797.41016, MR 1261635, 10.1007/978-3-662-02888-9
Reference: [4] Erdélyi, T.: Inequalities for Lorentz polynomials.J. Approx. Theory 192 (2015), 297-305. Zbl 1330.26003, MR 3313486, 10.1016/j.jat.2014.12.012
Reference: [5] Erdős, P.: On extremal properties of the derivatives of polynomials.Ann. of Math. (2) 41 (1940), 310-313. Zbl 0024.00403, MR 0001945, 10.2307/1969005
Reference: [6] Govil, N. K.: On the derivative of a polynomial.Proc. Am. Math. Soc. 41 (1973), 543-546. Zbl 0279.30004, MR 0325932, 10.1090/S0002-9939-1973-0325932-8
Reference: [7] Lax, P. D.: Proof of a conjecture of P. Erdős on the derivative of a polynomial.Bull. Am. Math. Soc. 50 (1944), 509-513. Zbl 0061.01802, MR 0010731, 10.1090/S0002-9904-1944-08177-9
Reference: [8] Malik, M. A.: On the derivative of a polynomial.J. Lond. Math. Soc., II. Ser. 1 (1969), 57-60. Zbl 0179.37901, MR 0249583, 10.1112/jlms/s2-1.1.57
.

Files

Files Size Format View
CzechMathJ_67-2017-4_6.pdf 251.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo