Previous |  Up |  Next

Article

Title: Further determinant identities related to classical root systems (English)
Author: Chu, Wenchang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 4
Year: 2017
Pages: 981-987
Summary lang: English
.
Category: math
.
Summary: By introducing polynomials in matrix entries, six determinants are evaluated which may be considered extensions of Vandermonde-like determinants related to the classical root systems. (English)
Keyword: Vandermonde determinant
Keyword: symmetric function
Keyword: classical root system
MSC: 05E05
MSC: 15A15
idZBL: Zbl 06819567
idMR: MR3736013
DOI: 10.21136/CMJ.2017.0265-16
.
Date available: 2017-11-20T14:54:24Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146961
.
Reference: [1] Bhatnagar, G.: A short proof of an identity of Sylvester.Int. J. Math. Math. Sci. 22 (1999), 431-435. Zbl 0929.01019, MR 1695300, 10.1155/S0161171299224313
Reference: [2] Chu, W.: Divided differences and symmetric functions.Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 2 (1999), 609-618. Zbl 0935.05088, MR 1719558
Reference: [3] Chu, W.: Determinants and algebraic identities associated with the root systems of classical Lie algebras.Commun. Algebra 42 (2014), 3619-3633. Zbl 1291.05208, MR 3196066, 10.1080/00927872.2013.790394
Reference: [4] Chu, W., Claudio, L. V. Di: The Vandermonde determinant and generalizations associated with the classical Lie algebras.Ital. J. Pure Appl. Math. 20 (2006), 139-158 Italian. Zbl 1150.15005, MR 2247418
Reference: [5] Dyson, F. J.: Statistical theory of the energy levels of complex systems. I.J. Math. Phys. 3 (1962), 140-156. Zbl 0105.41604, MR 0143556, 10.1063/1.1703773
Reference: [6] Fulton, W., Harris, J.: Representation Theory.Graduate Texts in Mathematics 129, Springer, New York (1991). Zbl 0744.22001, MR 1153249, 10.1007/978-1-4612-0979-9
Reference: [7] Good, I. J.: Short proof of a conjecture by Dyson.J. Math. Phys. 11 (1970), 1884. MR 0258644, 10.1063/1.1665339
Reference: [8] Gross, K. I., Richards, D. St. P.: Constant term identities and hypergeometric functions on spaces of Hermitian matrices.J. Stat. Plann. Inference 34 (1993), 151-158. Zbl 0767.33010, MR 1209996, 10.1016/0378-3758(93)90040-D
Reference: [9] Macdonald, I. G.: Symmetric Functions and Hall Polynomials.Oxford Mathematical Monographs, Clarendon Press, Oxford (1979). Zbl 0487.20007, MR 0553598
.

Files

Files Size Format View
CzechMathJ_67-2017-4_7.pdf 208.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo