Previous |  Up |  Next

Article

Title: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting restricted normal Jacobi operators (English)
Author: Hwang, Doo Hyun
Author: Pak, Eunmi
Author: Woo, Changhwa
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 4
Year: 2017
Pages: 989-1004
Summary lang: English
.
Category: math
.
Summary: We give a classification of Hopf real hypersurfaces in complex hyperbolic two-plane Grassmannians ${\rm SU}_{2,m}/S(U_{2}{\cdot }U_{m})$ with commuting conditions between the restricted normal Jacobi operator $\overline {R}_{N}\phi $ and the shape operator $A$ (or the Ricci tensor $S$). (English)
Keyword: real hypersurface
Keyword: complex hyperbolic two-plane Grassmannians
Keyword: Hopf hypersurface
Keyword: shape operator
Keyword: Ricci tensor
Keyword: normal Jacobi operator
Keyword: commuting condition
MSC: 53C15
MSC: 53C40
idZBL: Zbl 06819568
idMR: MR3736014
DOI: 10.21136/CMJ.2017.0289-16
.
Date available: 2017-11-20T14:54:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146962
.
Reference: [1] Alías, L. J., Romero, A., Sánchez, M.: Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes.Gen. Relativ. Gravitation 27 (1995), 71-84. Zbl 0908.53034, MR 1310212, 10.1007/BF02105675
Reference: [2] Alías, L. J., Romero, A., Sánchez, M.: Spacelike hypersurfaces of constant mean curvature in spacetimes with symmetries.Proc. Conf., Valencia, 1998 Publ. R. Soc. Mat. Esp. 1, Real Sociedad Matemática Española, Madrid E. Llinares Fuster et al. (2000), 1-14. Zbl 0984.53025, MR 1791221
Reference: [3] Berndt, J., Suh, Y. J.: Contact hypersurfaces in Kähler manifolds.Proc. Am. Math. Soc. 143 (2015), 2637-2649. Zbl 1318.53052, MR 3326043, 10.1090/S0002-9939-2015-12421-5
Reference: [4] Latorre, J. M., Romero, A.: Uniqueness of noncompact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes.Geom. Dedicata 93 (2002), 1-10. Zbl 1029.53072, MR 1934681, 10.1023/A:1020341512060
Reference: [5] Lee, H., Suh, Y. J., Woo, C.: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting structure Jacobi operators.Mediterr. J. Math. 13 (2016), 3389-3407. Zbl 06661842, MR 3554315, 10.1007/s00009-016-0692-x
Reference: [6] Pérez, J. D., Suh, Y. J., Woo, C.: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting shape operator.Open Math. 13 (2015), 493-501. Zbl 1348.53064, MR 3391385, 10.1515/math-2015-0046
Reference: [7] Suh, Y. J.: Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians.Adv. Appl. Math. 50 (2013), 645-659. Zbl 1279.53051, MR 3032310, 10.1016/j.aam.2013.01.001
Reference: [8] Suh, Y. J.: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with Reeb vector field.Adv. Appl. Math. 55 (2014), 131-145. Zbl 1296.53123, MR 3176718, 10.1016/j.aam.2014.01.005
Reference: [9] Suh, Y. J.: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting Ricci tensor.Int. J. Math. 26 (2015), Article ID 1550008, 26 pages. Zbl 1335.53075, MR 3313653, 10.1142/S0129167X15500081
Reference: [10] Suh, Y. J.: Real hypersurfaces in the complex quadric with parallel Ricci tensor.Adv. Math. 281 (2015), 886-905. Zbl 06458142, MR 3366856, 10.1016/j.aim.2015.05.012
Reference: [11] Suh, Y. J., Woo, C.: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor.Math. Nachr. 287 (2014), 1524-1529. Zbl 1307.53043, MR 3256976, 10.1002/mana.201300283
.

Files

Files Size Format View
CzechMathJ_67-2017-4_8.pdf 290.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo