Previous |  Up |  Next

Article

Title: On Buchsbaum type modules and the annihilator of certain local cohomology modules (English)
Author: Khojali, Ahmad
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 4
Year: 2017
Pages: 1021-1029
Summary lang: English
.
Category: math
.
Summary: We consider the annihilator of certain local cohomology modules. Moreover, some results on vanishing of these modules will be considered. (English)
Keyword: annihilator of local cohomology
Keyword: non-Artinian local cohomology
Keyword: Buchsbaum type module
MSC: 13D45
idZBL: Zbl 06819570
idMR: MR3736016
DOI: 10.21136/CMJ.2017.0313-16
.
Date available: 2017-11-20T14:55:38Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146964
.
Reference: [1] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 136, Cambridge University Press, Cambridge (2012). Zbl 1263.13014, MR 3014449, 10.1017/CBO9781139044059
Reference: [2] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). Zbl 0909.13005, MR 1251956, 10.1017/CBO9780511608681
Reference: [3] Bruns, W., Schwänzl, R.: The number of equations defining a determinantal variety.Bull. Lond. Math. Soc. 22 (1990), 439-445. Zbl 0725.14039, MR 1082012, 10.1112/blms/22.5.439
Reference: [4] Eghbali, M.: On Artinianness of formal local cohomology, colocalization and coassociated primes.Math. Scand. 113 (2013), 5-19. Zbl 1301.13019, MR 3105540, 10.7146/math.scand.a-15478
Reference: [5] Eghbali, M., Schenzel, P.: On an endomorphism ring of local cohomology.Commun. Algebra 40 (2012), 4295-4305. Zbl 1273.13027, MR 2982939, 10.1080/00927872.2011.588982
Reference: [6] Hartshorne, R.: Affine duality and cofiniteness.Invent. Math. 9 (1970), 145-164. Zbl 0196.24301, MR 0257096, 10.1007/BF01404554
Reference: [7] Hellus, M.: On the set of associated primes of a local cohomology module.J. Algebra 237 (2001), 406-419. Zbl 1027.13009, MR 1813886, 10.1006/jabr.2000.8580
Reference: [8] Hellus, M.: A note on the injective dimension of local cohomology modules.Proc. Am. Math. Soc. 136 (2008), 2313-2321. Zbl 1153.13015, MR 2390497, 10.1090/S0002-9939-08-09198-3
Reference: [9] Hellus, M., Stückrad, J.: On endomorphism rings of local cohomology modules.Proc. Am. Math. Soc. 136 (2008), 2333-2341. Zbl 1152.13011, MR 2390499, 10.1090/S0002-9939-08-09240-X
Reference: [10] Hochster, M., Eagon, J. A.: A class of perfect determinantal ideals.Bull. Am. Math. Soc. 76 (1970), 1026-1029. Zbl 0201.37201, MR 0266912, 10.1090/S0002-9904-1970-12543-5
Reference: [11] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules.Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. Zbl 0749.13007, MR 1120477, 10.1017/S0305004100070493
Reference: [12] Huneke, C., Lyubeznik, G.: On the vanishing of local cohomology modules.Invent. Math. 102 (1990), 73-93. Zbl 0717.13011, MR 1069240, 10.1007/BF01233420
Reference: [13] Lynch, L. R.: Annihilators of top local cohomology.Commun. Algebra 40 (2012), 542-551. Zbl 1251.13015, MR 2889480, 10.1080/00927872.2010.533223
Reference: [14] Lyubeznik, G.: Finiteness properties of local cohomology modules (an application of $D$-modules to commutative algebra).Invent. Math. 113 (1993), 41-55. Zbl 0795.13004, MR 1223223, 10.1007/BF01244301
Reference: [15] Mahmood, W., Schenzel, P.: On invariants and endomorphism rings of certain local cohomology modules.J. Algebra 372 (2012), 56-67. Zbl 1270.13014, MR 2990000, 10.1016/j.jalgebra.2012.08.023
Reference: [16] Schenzel, P.: On formal local cohomology and connectedness.J. Algebra 315 (2007), 894-923. Zbl 1131.13018, MR 2351900, 10.1016/j.jalgebra.2007.06.015
Reference: [17] Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications. An Interaction between Algebra, Geometry and Topology.Springer, Berlin (1986). Zbl 0606.13017, MR 0873945, 10.1007/978-3-662-02500-0
Reference: [18] Varbaro, M.: Cohomological and projective dimensions.Compos. Math. 149 (2013), 1203-1210. Zbl 1290.13012, MR 3078644, 10.1112/S0010437X12000899
.

Files

Files Size Format View
CzechMathJ_67-2017-4_10.pdf 251.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo