Title:
|
Separately radial and radial Toeplitz operators on the projective space and representation theory (English) |
Author:
|
Quiroga-Barranco, Raul |
Author:
|
Sanchez-Nungaray, Armando |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
4 |
Year:
|
2017 |
Pages:
|
1005-1020 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider separately radial (with corresponding group ${\mathbb {T}}^n$) and radial (with corresponding group ${\rm U}(n))$ symbols on the projective space ${\mathbb {P}^n({\mathbb {C}})}$, as well as the associated Toeplitz operators on the weighted Bergman spaces. It is known that the $C^*$-algebras generated by each family of such Toeplitz operators are commutative (see R. Quiroga-Barranco and A. Sanchez-Nungaray (2011)). We present a new representation theoretic proof of such commutativity. Our method is easier and more enlightening as it shows that the commutativity of the $C^*$-algebras is a consequence of the existence of multiplicity-free representations. Furthermore, our method shows how to extend the current formulas for the spectra of the corresponding Toeplitz operators to any closed group lying between ${\mathbb {T}}^n$ and ${\rm U}(n)$. (English) |
Keyword:
|
Toeplitz operator |
Keyword:
|
projective space |
MSC:
|
22E46 |
MSC:
|
32A36 |
MSC:
|
32M15 |
MSC:
|
47B35 |
idZBL:
|
Zbl 06819569 |
idMR:
|
MR3736015 |
DOI:
|
10.21136/CMJ.2017.0293-16 |
. |
Date available:
|
2017-11-20T14:55:15Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146963 |
. |
Reference:
|
[1] Dawson, M., Ólafsson, G., Quiroga-Barranco, R.: Commuting Toeplitz operators on bounded symmetric domains and multiplicity-free restrictions of holomorphic discrete series.J. Funct. Anal. 268 (2015), 1711-1732. Zbl 1320.47029, MR 3315576, 10.1016/j.jfa.2014.12.002 |
Reference:
|
[2] Engliš, M.: Density of algebras generated by Toeplitz operators on Bergman spaces.Ark. Mat. 30 (1992), 227-243. Zbl 0784.46036, MR 1289753, 10.1007/BF02384872 |
Reference:
|
[3] Goodman, R., Wallach, N. R.: Symmetry, Representations, and Invariants.Graduate Texts in Mathematics 255, Springer, New York (2009). Zbl 1173.22001, MR 2522486, 10.1007/978-0-387-79852-3 |
Reference:
|
[4] Grudsky, S., Karapetyants, A., Vasilevski, N.: Toeplitz operators on the unit ball in $\mathbb C^n$ with radial symbols.J. Oper. Theory 49 (2003), 325-346. Zbl 1027.32010, MR 1991742 |
Reference:
|
[5] Grudsky, S., Quiroga-Barranco, R., Vasilevski, N.: Commutative $C^*$-algebras of Toeplitz operators and quantization on the unit disk.J. Funct. Anal. 234 (2006), 1-44. Zbl 1100.47023, MR 2214138, 10.1016/j.jfa.2005.11.015 |
Reference:
|
[6] Morales-Ramos, M. A., Sánchez-Nungaray, A., Ramírez-Ortega, J.: Toeplitz operators with quasi-separately radial symbols on the complex projective space.Bol. Soc. Mat. Mex., III. Ser. 22 (2016), 213-227. Zbl 06562396, MR 3473758, 10.1007/s40590-015-0073-7 |
Reference:
|
[7] Quiroga-Barranco, R.: Separately radial and radial Toeplitz operators on the unit ball and representation theory.Bol. Soc. Mat. Mex., III. Ser. 22 (2016), 605-623. Zbl 06646397, MR 3544156, 10.1007/s40590-016-0111-0 |
Reference:
|
[8] Quiroga-Barranco, R., Sanchez-Nungaray, A.: Commutative $C^*$-algebras of Toeplitz operators on complex projective spaces.Integral Equations Oper. Theory 71 (2011), 225-243. Zbl 1251.47065, MR 2838143, 10.1007/s00020-011-1897-9 |
Reference:
|
[9] Quiroga-Barranco, R., Vasilevski, N.: Commutative $C^*$-algebras of Toeplitz operators on the unit ball, I.: Bargmann-type transforms and spectral representations of Toeplitz operators.Integral Equations Oper. Theory 59 (2007), 379-419. Zbl 1144.47024, MR 2363015, 10.1007/s00020-007-1537-6 |
Reference:
|
[10] Quiroga-Barranco, R., Vasilevski, N.: Commutative $C^*$-algebras of Toeplitz operators on the unit ball, II.: Geometry of the level sets of symbols.Integral Equations Oper. Theory 60 (2008), 89-132. Zbl 1144.47025, MR 2380317, 10.1007/s00020-007-1540-y |
. |