Previous |  Up |  Next

Article

Title: (Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras (English)
Author: Wang, Chao
Author: Yang, Xiaoyan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 4
Year: 2017
Pages: 1031-1048
Summary lang: English
.
Category: math
.
Summary: Let $\Lambda =\left (\begin {smallmatrix} A&M\\ 0&B \end {smallmatrix}\right )$ be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective $\Lambda $-modules under the condition that $M$ is a cocompatible $(A,B)$-bimodule, we establish a recollement of the stable category $\overline {\rm Ginj(\Lambda )}$. We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over $\Lambda $. (English)
Keyword: (strongly) Gorenstein injective module
Keyword: upper triangular matrix Artin algebra
Keyword: triangulated category
Keyword: recollement
MSC: 16E65
MSC: 18E30
MSC: 18G25
idZBL: Zbl 06819570
idMR: MR3736017
DOI: 10.21136/CMJ.2017.0346-16
.
Date available: 2017-11-20T14:55:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146965
.
Reference: [1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules.Graduate Texts in Mathematics 13, Springer, New York (1992). Zbl 0765.16001, MR 1245487, 10.1007/978-1-4612-4418-9
Reference: [2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras.Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge (1995). Zbl 0834.16001, MR 1314422, 10.1017/CBO9780511623608
Reference: [3] Beligiannis, A.: On algebras of finite Cohen-Macaulay type.Adv. Math. 226 (2011), 1973-2019. Zbl 1239.16016, MR 2737805, 10.1016/j.aim.2010.09.006
Reference: [4] Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective and flat modules.J. Pure Appl. Algebra 210 (2007), 437-445. Zbl 1118.13014, MR 2320007, 10.1016/j.jpaa.2006.10.010
Reference: [5] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules.Math. Z. 220 (1995), 611-633. Zbl 0845.16005, MR 1363858, 10.1007/BF02572634
Reference: [6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146, 10.1515/9783110803662
Reference: [7] Gao, N., Zhang, P.: Strongly Gorenstein projective modules over upper triangular matrix Artin algebras.Commun. Algebra 37 (2009), 4259-4268. Zbl 1220.16013, MR 2588847, 10.1080/00927870902828934
Reference: [8] Happel, D.: Triangulated Categories in the Representation Theory of Finite Dimensional Algebras.London Mathematical Society Lecture Note Series 119, Cambridge University Press, Cambridge (1988). Zbl 0635.16017, MR 0935124, 10.1017/CBO9780511629228
Reference: [9] Holm, H.: Gorenstein homological dimensions.J. Pure Appl. Algebra 189 (2004), 167-193. Zbl 1050.16003, MR 2038564, 10.1016/j.jpaa.2003.11.007
Reference: [10] Wang, C.: Gorenstein injective modules over upper triangular matrix Artin algebras.J. Shandong Univ., Nat. Sci. 51 (2016), 89-93 Chinese. Zbl 06634874, MR 3467852, 10.6040/j.issn.1671-9352.0.2015.235
Reference: [11] Yang, X., Liu, Z.: Strongly Gorenstein projective, injective and flat modules.J. Algebra 320 (2008), 2659-2674. Zbl 1173.16006, MR 2441993, 10.1016/j.jalgebra.2008.07.006
Reference: [12] Zhang, P.: Gorenstein-projective modules and symmetric recollements.J. Algebra 388 (2013), 65-80. Zbl 06266167, MR 3061678, 10.1016/j.jalgebra.2013.05.008
.

Files

Files Size Format View
CzechMathJ_67-2017-4_11.pdf 329.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo