Title:
|
Thompson's conjecture for the alternating group of degree $2p$ and $2p+1$ (English) |
Author:
|
Babai, Azam |
Author:
|
Mahmoudifar, Ali |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
4 |
Year:
|
2017 |
Pages:
|
1049-1058 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For a finite group $G$ denote by $N(G)$ the set of conjugacy class sizes of $G$. In 1980s, J. G. Thompson posed the following conjecture: If $L$ is a finite nonabelian simple group, $G$ is a finite group with trivial center and $N(G) = N(L)$, then $G\cong L$. We prove this conjecture for an infinite class of simple groups. Let $p$ be an odd prime. We show that every finite group $G$ with the property $Z(G)=1$ and $N(G) = N(A_{i})$ is necessarily isomorphic to $A_{i}$, where $i\in \{2p,2p+1\}$. (English) |
Keyword:
|
finite group |
Keyword:
|
conjugacy class size |
Keyword:
|
simple group |
MSC:
|
20D05 |
MSC:
|
20D60 |
idZBL:
|
Zbl 06819572 |
idMR:
|
MR3736018 |
DOI:
|
10.21136/CMJ.2017.0396-16 |
. |
Date available:
|
2017-11-20T14:56:25Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146966 |
. |
Reference:
|
[1] Abdollahi, A., Shahverdi, H.: Characterization of the alternating group by its non-commuting graph.J. Algebra 357 (2012), 203-207. Zbl 1255.20026, MR 2905249, 10.1016/j.jalgebra.2012.01.038 |
Reference:
|
[2] Ahanjideh, N.: On Thompson's conjecture for some finite simple groups.J. Algebra 344 (2011), 205-228. Zbl 1247.20015, MR 2831937, 10.1016/j.jalgebra.2011.05.043 |
Reference:
|
[3] Ahanjideh, N.: On the Thompson's conjecture on conjugacy classes sizes.Int. J. Algebra Comput. 23 (2013), 37-68. Zbl 1281.20015, MR 3040801, 10.1142/S0218196712500774 |
Reference:
|
[4] Alavi, S. H., Daneshkhah, A.: A new characterization of alternating and symmetric groups.J. Appl. Math. Comput. 17 (2005), 245-258. Zbl 1066.20012, MR 2108803, 10.1007/BF02936052 |
Reference:
|
[5] Chen, G.: On Thompson's conjecture.J. Algebra 185 (1996), 184-193. Zbl 0861.20018, MR 1409982, 10.1006/jabr.1996.0320 |
Reference:
|
[6] Gorshkov, I. B.: Thompson's conjecture for simple groups with connected prime graph.Algebra Logic 51 (2012), 111-127 translated from Algebra Logika 51 2012 168-192 Russian. Zbl 1270.20010, MR 2986578, 10.1007/s10469-012-9175-8 |
Reference:
|
[7] Gorshkov, I. B.: On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361.Proc. Steklov Inst. Math. 293 (2016), S58--S65 translated from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22 2016 44-51 Russian. Zbl 1352.20022, MR 3497182, 10.1134/S0081543816050060 |
Reference:
|
[8] Gorshkov, I. B.: Towards Thompson's conjecture for alternating and symmetric groups.J. Group Theory 19 (2016), 331-336. Zbl 1341.20022, MR 3466599, 10.1515/jgth-2015-0043 |
Reference:
|
[9] Isaacs, I. M.: Finite Group Theory.Graduate Studies in Mathematics 92, American Mathematical Society, Providence (2008). Zbl 1169.20001, MR 2426855, 10.1090/gsm/092 |
Reference:
|
[10] Mahmoudifar, A., Khosravi, B.: On the characterizability of alternating groups by order and prime graph.Sib. Math. J. 56 (2015), 125-131 translated from Sib. Mat. Zh. 56 2015 149-157 Russian. Zbl 1318.20027, MR 3407946, 10.1134/S0037446615010127 |
Reference:
|
[11] Mazurov, V. D., eds., E. I. Khukhro: The Kourovka Notebook. Unsolved Problems in Group Theory.Institute of Mathematics, Russian Academy of Sciences Siberian Division, Novosibirsk (2010). Zbl 1211.20001, MR 3235009 |
Reference:
|
[12] Vakula, I. A.: On the structure of finite groups isospectral to an alternating group.Proc. Steklov Inst. Math. 272 (2011), 271-286 translated from Tr. Inst. Mat. Mekh. (Ekaterinburg) 16 2010 45-60 Russian. Zbl 1233.20016, MR 3546195, 10.1134/S0081543811020192 |
Reference:
|
[13] Vasil'ev, A. V.: On Thompson's conjecture.Sib. Elektron. Mat. Izv. 6 (2009), 457-464. Zbl 1289.20057, MR 2586699 |
Reference:
|
[14] Xu, M.: Thompson's conjecture for alternating group of degree 22.Front. Math. China 8 (2013), 1227-1236. Zbl 1281.20018, MR 3091135, 10.1007/s11464-013-0320-z |
. |