Previous |  Up |  Next

Article

Title: Pointwise Fourier inversion of distributions on spheres (English)
Author: González Vieli, Francisco Javier
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 4
Year: 2017
Pages: 1059-1070
Summary lang: English
.
Category: math
.
Summary: Given a distribution $T$ on the sphere we define, in analogy to the work of Łojasiewicz, the value of $T$ at a point $\xi $ of the sphere and we show that if $T$ has the value $\tau $ at $\xi $, then the Fourier-Laplace series of $T$ at $\xi $ is Abel-summable to $\tau $. (English)
Keyword: distribution
Keyword: sphere
Keyword: Fourier-Laplace series
Keyword: Abel summability
MSC: 42C10
MSC: 46F12
idZBL: Zbl 06819573
idMR: MR3736019
DOI: 10.21136/CMJ.2017.0403-16
.
Date available: 2017-11-20T14:56:51Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146967
.
Reference: [1] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory.Graduate Texts in Mathematics 137, Springer, New York (2001). Zbl 0959.31001, MR 1805196, 10.1007/b97238
Reference: [2] Estrada, R., Kanwal, R. P.: Distributional boundary values of harmonic and analytic functions.J. Math. Anal. Appl. 89 (1982), 262-289. Zbl 0511.31008, MR 0672200, 10.1016/0022-247X(82)90102-0
Reference: [3] Vieli, F. J. González: Fourier inversion of distributions on the sphere.J. Korean Math. Soc. 41 (2004), 755-772. Zbl 1066.46031, MR 2068151, 10.4134/JKMS.2004.41.4.755
Reference: [4] Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics.Encyclopedia of Mathematics and Its Applications 61, Cambridge University Press, Cambridge (1996). Zbl 0877.52002, MR 1412143, 10.1017/CBO9780511530005
Reference: [5] Kostadinova, S., Vindas, J.: Multiresolution expansions of distributions: pointwise convergence and quasiasymptotic behavior.Acta Appl. Math. 138 (2015), 115-134. Zbl 1322.42045, MR 3365583, 10.1007/s10440-014-9959-z
Reference: [6] Łojasiewicz, S.: Sur la fixation des variables dans une distribution.Stud. Math. 17 (1958), 1-64 French. Zbl 0086.09501, MR 0107167, 10.4064/sm-17-1-1-64
Reference: [7] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces.Princeton Mathematical Series 32, Princeton University Press, Princeton (1971). Zbl 0232.42007, MR 0304972, 10.1515/9781400883899
Reference: [8] Vindas, J., Estrada, R.: Distributional point values and convergence of Fourier series and integrals.J. Fourier Anal. Appl. 13 (2007), 551-576. Zbl 1138.46030, MR 2355012, 10.1007/s00041-006-6015-z
Reference: [9] Walter, G.: Pointwise convergence of distribution expansions.Stud. Math. 26 (1966), 143-154. Zbl 0144.37401, MR 0190624, 10.4064/sm-26-2-143-154
Reference: [10] Walter, G. G., Shen, X.: Wavelets and Other Orthogonal Systems.Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton (2001). Zbl 1005.42018, MR 1887929
.

Files

Files Size Format View
CzechMathJ_67-2017-4_13.pdf 270.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo