Previous |  Up |  Next

Article

Title: A new algorithm for approximating the least concave majorant (English)
Author: Franců, Martin
Author: Kerman, Ron
Author: Sinnamon, Gord
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 4
Year: 2017
Pages: 1071-1093
Summary lang: English
.
Category: math
.
Summary: The least concave majorant, $\hat F$, of a continuous function $F$ on a closed interval, $I$, is defined by \[ \hat F (x) = \inf \{ G(x)\colon G \geq F,\ G \text { concave}\},\quad x \in I. \] We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on $I$. Given any function $F \in \mathcal {C}^4(I)$, it can be well-approximated on $I$ by a clamped cubic spline $S$. We show that $\hat S$ is then a good approximation to $\hat F$. \endgraf We give two examples, one to illustrate, the other to apply our algorithm. (English)
Keyword: least concave majorant
Keyword: level function
Keyword: spline approximation
MSC: 26A51
MSC: 46N10
MSC: 52A41
idZBL: Zbl 06819574
idMR: MR3736020
DOI: 10.21136/CMJ.2017.0408-16
.
Date available: 2017-11-20T14:57:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146968
.
Reference: [1] Brudnyĭ, Y. A., Krugljak, N. Y.: Interpolation Functors and Interpolation Spaces. Vol. 1.North-Holland Mathematical Library 47, Amsterdam (1991). Zbl 0743.46082, MR 1107298
Reference: [2] Carolan, C. A.: The least concave majorant of the empirical distribution function.Can. J. Stat. 30 (2002), 317-328. Zbl 1012.62052, MR 1926068, 10.2307/3315954
Reference: [3] Debreu, G.: Least concave utility functions.J. Math. Econ. 3 (1976), 121-129. Zbl 0361.90007, MR 0411563, 10.1016/0304-4068(76)90020-3
Reference: [4] Hall, C. A., Meyer, W. W.: Optimal error bounds for cubic spline interpolation.J. Approximation Theory 16 (1976), 105-122. Zbl 0316.41007, MR 0397247, 10.1016/0021-9045(76)90040-x
Reference: [5] Halperin, I.: Function spaces.Can. J. Math. 5 (1953), 273-288. Zbl 0052.11303, MR 0056195, 10.4153/CJM-1953-031-3
Reference: [6] Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A.: Wavelets, Approximation, and Statistical Applications.Lecture Notes in Statistics 129, Springer, Berlin (1998). Zbl 0899.62002, MR 1618204, 10.1007/978-1-4612-2222-4
Reference: [7] Jarvis, R. A.: On the identification of the convex hull of a finite set of points in the plane.Inf. Process. Lett. 2 (1973), 18-21. Zbl 0256.68041, MR 0381227, 10.1016/0020-0190(73)90020-3
Reference: [8] Kerman, R., Milman, M., Sinnamon, G.: On the Brudnyĭ-Krugljak duality theory of spaces formed by the $\mathcal{K}$-method of interpolation.Rev. Mat. Complut. 20 (2007), 367-389. Zbl 1144.46058, MR 2351114, 10.5209/rev_rema.2007.v20.n2.16492
Reference: [9] Lorentz, G. G.: Bernstein Polynomials.Mathematical Expositions, no. 8. University of Toronto Press X, Toronto (1953). Zbl 0051.05001, MR 0057370
Reference: [10] Mastyło, M., Sinnamon, G.: A Calderón couple of down spaces.J. Funct. Anal. 240 (2006), 192-225. Zbl 1116.46015, MR 2259895, 10.1016/j.jfa.2006.05.007
Reference: [11] Peetre, J.: Concave majorants of positive functions.Acta Math. Acad. Sci. Hung. 21 (1970), 327-333. Zbl 0204.38002, MR 0272960, 10.1007/BF01894779
.

Files

Files Size Format View
CzechMathJ_67-2017-4_14.pdf 357.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo