Title:
|
Maps on upper triangular matrices preserving zero products (English) |
Author:
|
Słowik, Roksana |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
4 |
Year:
|
2017 |
Pages:
|
1095-1103 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Consider $\mathcal T_n(F)$---the ring of all $n\times n$ upper triangular matrices defined over some field $F$. A map $\phi $ is called a zero product preserver on ${\mathcal T}_n(F)$ in both directions if for all $x,y\in {\mathcal T}_n(F)$ the condition $xy=0$ is satisfied if and only if $\phi (x)\phi (y)=0$. In the present paper such maps are investigated. The full description of bijective zero product preservers is given. Namely, on the set of the matrices that are invertible, the map $\phi $ may act in any bijective way, whereas for the zero divisors and zero matrix one can write $\phi $ as a composition of three types of maps. The first of them is a conjugacy, the second one is an automorphism induced by some field automorphism, and the third one transforms every matrix $x$ into a matrix $x'$ such that $\{y\in \mathcal T_n(F)\colon xy=0\}=\{y\in \mathcal T_n(F)\colon x'y=0\}$, $\{y\in \mathcal T_n(F)\colon yx=0\}=\{y\in \mathcal T_n(F)\colon yx'=0\}$. (English) |
Keyword:
|
zero product preserver |
Keyword:
|
upper triangular matrix |
MSC:
|
15A99 |
MSC:
|
16U99 |
idZBL:
|
Zbl 06819575 |
idMR:
|
MR3736021 |
DOI:
|
10.21136/CMJ.2017.0416-16 |
. |
Date available:
|
2017-11-20T14:57:44Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146969 |
. |
Reference:
|
[1] Alaminos, J., Brešar, M., Extremera, J., Villena, A. R.: Maps preserving zero products.Studia Math. 193 (2009), 131-159. Zbl 1168.47029, MR 2515516, 10.4064/sm193-2-3 |
Reference:
|
[2] Beck, I.: Coloring of commutative rings.J. Algebra 116 (1988), 208-226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5 |
Reference:
|
[3] Botta, P., Pierce, S., Watkins, W.: Linear transformations that preserve the nilpotent matrices.Pac. J. Math. 104 (1983), 39-46. Zbl 0446.15002, MR 0683726, 10.2140/pjm.1983.104.39 |
Reference:
|
[4] Božić, I., Petrović, Z.: Zero-divisor graphs of matrices over commutative rings.Commun. Algebra 37 (2009), 1186-1192. Zbl 1185.16031, MR 2510978, 10.1080/00927870802465951 |
Reference:
|
[5] Burgos, M., Sánchez-Ortega, J.: On mappings preserving zero products.Linear Multilinear Algebra 61 (2013), 323-335. Zbl 1281.15029, MR 3003427, 10.1080/03081087.2012.678344 |
Reference:
|
[6] Chebotar, M. A., Ke, W.-F., Lee, P.-H.: On maps preserving square-zero matrices.J. Algebra 289 (2005), 421-445. Zbl 1094.16022, MR 2142380, 10.1016/j.jalgebra.2005.01.018 |
Reference:
|
[7] Chebotar, M. A., Ke, W.-F., Lee, P.-H., Wong, N.-C.: Mappings preserving zero products.Stud. Math. 155 (2003), 77-94. Zbl 1032.46063, MR 1961162, 10.4064/sm155-1-6 |
Reference:
|
[8] Fenstermacher, T., Gegner, E.: Zero-divisor graphs of $2\times 2$ upper triangular matrix rings over $\Bbb Z_n$.Missouri J. Math. Sci. 26 (2014), 151-167. Zbl 1308.05065, MR 3293812, 10.35834/mjms/1418931956 |
Reference:
|
[9] Hou, J., Zhao, L.: Zero-product preserving additive maps on symmetric operator spaces and self-adjoint operator spaces.Linear Algebra Appl. 399 (2005), 235-244. Zbl 1068.47040, MR 2151936, 10.1016/j.laa.2004.12.002 |
Reference:
|
[10] Li, B.: Zero-divisor graph of triangular matrix rings over commutative rings.Int. J. Algebra 5 (2011), 255-260. Zbl 1228.16026, MR 2803507 |
Reference:
|
[11] Li, A., Tucci, R. P.: Zero divisor graphs of upper triangular matrix rings.Comm. Algebra 41 (2013), 4622-4636. Zbl 1291.16023, MR 3169542, 10.1080/00927872.2012.706841 |
Reference:
|
[12] Šemrl, P.: Linear mappings preserving square-zero matrices.Bull. Aust. Math. Soc. 48 (1993), 365-370. Zbl 0795.15002, MR 1248039, 10.1017/S0004972700015811 |
Reference:
|
[13] Słowik, R.: Maps on infinite triangular matrices preserving idempotents.Linear Multilinear Algebra 62 (2014), 938-964. Zbl 1305.15064, MR 3232670, 10.1080/03081087.2013.801965 |
Reference:
|
[14] Wang, L.: A note on automorphisms of the zero-divisor graph of upper triangular matrices.Linear Algebra Appl. 465 (2015), 214-220. Zbl 1312.16026, MR 3274672, 10.1016/j.laa.2014.09.035 |
Reference:
|
[15] Wong, W. J.: Maps on simple algebras preserving zero products I. The associative case.Pac. J. Math. 89 (1980), 229-247. Zbl 0405.16006, MR 0596933, 10.2140/pjm.1980.89.229 |
Reference:
|
[16] Wong, D., Ma, X., Zhou, J.: The group of automorphisms of a zero-divisor graph based on rank one upper triangular matrices.Linear Algebra Appl. 460 (2014), 242-258. Zbl 1300.05187, MR 3250541, 10.1016/j.laa.2014.07.041 |
. |