Previous |  Up |  Next

Article

Title: Embeddings between weighted Copson and Cesàro function spaces (English)
Author: Gogatishvili, Amiran
Author: Mustafayev, Rza
Author: Ünver, Tuğçe
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 4
Year: 2017
Pages: 1105-1132
Summary lang: English
.
Category: math
.
Summary: In this paper, characterizations of the embeddings between weighted Copson function spaces ${\rm Cop}_{p_1,q_1}(u_1,v_1)$ and weighted Cesàro function spaces ${\rm Ces}_{p_2,q_2}(u_2,v_2)$ are given. In particular, two-sided estimates of the optimal constant $c$ in the inequality $$ \def \frc #1#2{{#1/#2}} \begin{aligned}d \biggl ( \int _0^{\infty } &\biggl ( \int _0^t f(\tau )^{p_2}v_2(\tau ) {\rm d}\tau \biggr )^{\frc {q_2}{p_2}} u_2(t) {\rm d} t\biggr )^{\frc {1}{q_2}}\\ & \le c \biggl ( \int _0^{\infty } \biggl ( \int _t^{\infty } f(\tau )^{p_1} v_1(\tau ) {\rm d}\tau \biggr )^{\frc {q_1}{p_1}} u_1(t) {\rm d} t\biggr )^{\frc {1}{q_1}}, \end{aligned}d $$ where $p_1,p_2,q_1,q_2 \in (0,\infty )$, $p_2 \le q_2$ and $u_1$, $u_2$, $v_1$, $v_2$ are weights on $(0,\infty )$, are obtained. The most innovative part consists of the fact that possibly different parameters $p_1$ and $p_2$ and possibly different inner weights $v_1$ and $v_2$ are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities. (English)
Keyword: Cesàro and Copson function spaces
Keyword: embedding
Keyword: iterated Hardy inequalities
MSC: 26D10
MSC: 46E30
idZBL: Zbl 06819576
idMR: MR3736022
DOI: 10.21136/CMJ.2017.0424-16
.
Date available: 2017-11-20T14:58:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146970
.
Reference: [1] R. Askey, R. P. Boas, Jr.: Some integrability theorems for power series with positive coefficients.Math. Essays Dedicated to A. J. Macintyre Ohio Univ. Press, Athens (1970), 23-32. Zbl 0212.41401, MR 0277956
Reference: [2] Astashkin, S. V.: On the geometric properties of Cesàro spaces.Sb. Math. 203 (2012), 514-533. English. Russian original translation from Mat. Sb. 203 2012 61-80. Zbl 1253.46022, MR 2976287, 10.1070/SM2012v203n04ABEH004232
Reference: [3] Astashkin, S. V., Maligranda, L.: Cesàro function spaces fail the fixed point property.Proc. Am. Math. Soc. 136 (2008), 4289-4294. Zbl 1168.46014, MR 2431042, 10.1090/S0002-9939-08-09599-3
Reference: [4] Astashkin, S. V., Maligranda, L.: Structure of Cesàro function spaces.Indag. Math., New Ser. 20 (2009), 329-379. Zbl 1200.46027, MR 2639977, 10.1016/S0019-3577(10)00002-9
Reference: [5] Astashkin, S. V., Maligranda, L.: Rademacher functions in Cesàro type spaces.Stud. Math. 198 (2010), 235-247. Zbl 1202.46031, MR 2650988, 10.4064/sm198-3-3
Reference: [6] Astashkin, S. V., Maligranda, L.: Geometry of Cesàro function spaces.Funct. Anal. Appl. 45 (2011), 64-68. English. Russian original translation from Funkts. Anal. Prilozh. 45 2011 79-83. Zbl 1271.46027, MR 2848742, 10.1007/s10688-011-0007-8
Reference: [7] Astashkin, S. V., Maligranda, L.: A short proof of some recent results related to Cesàro function spaces.Indag. Math., New Ser. 24 (2013), 589-592. Zbl 1292.46008, MR 3064562, 10.1016/j.indag.2013.03.001
Reference: [8] Astashkin, S. V., Maligranda, L.: Interpolation of Cesàro sequence and function spaces.Stud. Math. 215 (2013), 39-69. Zbl 06172508, MR 3071806, 10.4064/sm215-1-4
Reference: [9] Astashkin, S. V., Maligranda, L.: Interpolation of Cesàro and Copson spaces.Proc. Int. Symp. on Banach and Function Spaces IV (ISBFS 2012), Kitakyushu 2012 M. Kato et al. Yokohama Publishers, Yokohama (2014), 123-133. Zbl 1338.46034, MR 3289767
Reference: [10] Astashkin, S. V., Maligranda, L.: Structure of Cesàro function spaces: a survey.Function Spaces X H. Hudzik et al. Proc. Int. Conf., Poznań 2012, Polish Academy of Sciences, Institute of Mathematics, Warszawa; Banach Center Publications 102 (2014), 13-40. Zbl 1327.46028, MR 3330604, 10.4064/bc102-0-1
Reference: [11] Belinskii, E. S., Liflyand, E. R., Trigub, R. M.: The Banach algebra $A^*$ and its properties.J. Fourier Anal. Appl. 3 (1997), 103-129. Zbl 0882.42002, MR 1438893, 10.1007/BF02649131
Reference: [12] Bennett, G.: Factorizing the classical inequalities.Mem. Am. Math. Soc. 120 (1996), 130 pages. Zbl 0857.26009, MR 1317938, 10.1090/memo/0576
Reference: [13] R. P. Boas, Jr.: Integrability Theorems for Trigonometric Transforms.Ergebnisse der Mathematik und ihrer Grenzgebiete 38, Springer, New York (1967). Zbl 0145.06804, MR 0219973, 10.1007/978-3-642-87108-5
Reference: [14] R. P. Boas, Jr.: Some integral inequalities related to Hardy's inequality.J. Anal. Math. 23 (1970), 53-63. Zbl 0206.06803, MR 0274685, 10.1007/BF02795488
Reference: [15] Carro, M., Gogatishvili, A., Martín, J., Pick, L.: Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces.J. Oper. Theory 59 (2008), 309-332. Zbl 1150.26001, MR 2411048
Reference: [16] Cui, S. Chen,Y., Hudzik, H., Sims, B.: Geometric properties related to fixed point theory in some Banach function lattices.Handbook of Metric Fixed Point Theory W. Kirk et al. Kluwer Academic Publishers, Dordrecht (2001), 339-389. Zbl 1013.46015, MR 1904283, 10.1007/978-94-017-1748-9_12
Reference: [17] Cui, Y., Hudzik, H.: Some geometric properties related to fixed point theory in Cesàro spaces.Collect. Math. 50 (1999), 277-288. Zbl 0955.46007, MR 1744077
Reference: [18] Cui, Y., Hudzik, H.: Packing constant for Cesaro sequence spaces.Nonlinear Anal., Theory Methods Appl. 47 (2001), 2695-2702. Zbl 1042.46505, MR 1972393, 10.1016/S0362-546X(01)00389-3
Reference: [19] Cui, Y., Hudzik, H., Li, Y.: On the García-Falset coefficient in some Banach sequence spaces.Function Spaces. Proc. Int. Conf. (Poznań 1998) H. Hudzik et al. Lect. Notes Pure Appl. Math. 213, Marcel Dekker, New York (2000), 141-148. Zbl 0962.46011, MR 1772119
Reference: [20] Cui, Y., Meng, C.-H., Płuciennik, R.: Banach-Saks property and property $(\beta)$ in Cesàro sequence spaces.Southeast Asian Bull. Math. 24 (2000), 201-210. Zbl 0956.46003, MR 1810056, 10.1007/s100120070003
Reference: [21] Cui, Y., Płuciennik, R.: Local uniform nonsquareness in Cesàro sequence spaces.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997), 47-58. Zbl 0898.46006, MR 1608225
Reference: [22] Evans, W. D., Gogatishvili, A., Opic, B.: The reverse Hardy inequality with measures.Math. Inequal. Appl. 11 (2008), 43-74. Zbl 1136.26004, MR 2376257, 10.7153/mia-11-03
Reference: [23] Gilbert, J. E.: Interpolation between weighted $L^{p}$-spaces.Ark. Mat. 10 (1972), 235-249. Zbl 0264.46027, MR 0324393, 10.1007/BF02384812
Reference: [24] Gogatishvili, A., Mustafayev, R. Ch.: Iterated Hardy-type inequalities involving suprema.Math. Inequal. Appl. 20 (2017), 901-927. MR 3711402
Reference: [25] Gogatishvili, A., Mustafayev, R. Ch.: Weighted iterated Hardy-type inequalities.Math. Inequal. Appl. 20 (2017), 683-728. MR 3653914, dx.doi.org/10.7153/mia-20-45
Reference: [26] Gogatishvili, A., Mustafayev, R. Ch., Persson, L.-E.: Some new iterated Hardy-type inequalities.J. Funct. Spaces Appl. 2012 (2012), Article ID 734194, 30 pages. Zbl 1260.26023, MR 3000818, 10.1155/2012/734194
Reference: [27] Gogatishvili, A., Opic, B., Pick, L.: Weighted inequalities for Hardy-type operators involving suprema.Collect. Math. 57 (2006), 227-255. Zbl 1116.47041, MR 2264321
Reference: [28] Gogatishvili, A., Persson, L.-E., Stepanov, V. D., Wall, P.: Some scales of equivalent conditions to characterize the Stieltjes inequality: the case $q< p$.Math. Nachr. 287 (2014), 242-253. Zbl 1298.26052, MR 3163577, 10.1002/mana.201200118
Reference: [29] Grosse-Erdmann, K.-G.: The Blocking Technique, Weighted Mean Operators and Hardy's Inequality.Lecture Notes in Mathematics 1679, Springer, Berlin (1998). Zbl 0888.26014, MR 1611898, 10.1007/BFb0093486
Reference: [30] Hassard, B. D., Hussein, D. A.: On Cesàro function spaces.Tamkang J. Math. 4 (1973), 19-25. Zbl 0284.46023, MR 0333700
Reference: [31] Jagers, A. A.: A note on Cesàro sequence spaces.Nieuw Arch. Wiskd., III. Ser. 22 (1974), 113-124. Zbl 0286.46017, MR 0348444
Reference: [32] Johnson, R.: Lipschitz spaces, Littlewood-Paley spaces, and convoluteurs.Proc. Lond. Math. Soc., III. Ser. 29 (1974), 127-141. Zbl 0295.46051, MR 0355578, 10.1112/plms/s3-29.1.127
Reference: [33] Kamińska, A., Kubiak, D.: On the dual of Cesàro function space.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2760-2773. Zbl 1245.46024, MR 2878472, 10.1016/j.na.2011.11.019
Reference: [34] Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequality. About Its History and Some Related Results.Vydavatelský Servis, Plzeň (2007). Zbl 1213.42001, MR 2351524
Reference: [35] Kufner, A., Persson, L.-E.: Weighted Inequalities of Hardy Type.World Scientific Publishing, Singapore (2003). Zbl 1065.26018, MR 1982932, 10.1142/5129
Reference: [36] Mustafayev, R., Ünver, T.: Reverse Hardy-type inequalities for supremal operators with measures.Math. Inequal. Appl. 18 (2015), 1295-1311. Zbl 1331.26032, MR 3414598, 10.7153/mia-18-101
Reference: [37] Opic, B., Kufner, A.: Hardy-Type Inequalities.Pitman Research Notes in Mathematics 219, Longman Scientific & Technical, New York (1990). Zbl 0698.26007, MR 1069756
Reference: [38] : Programma van Jaarlijkse Prijsvragen (Annual Problem Section).Nieuw Arch. Wiskd. 16 (1968), 47-51.
Reference: [39] Shiue, J.-S.: A note on Cesàro function space.Tamkang J. Math. 1 (1970), 91-95. Zbl 0215.19601, MR 0276751
Reference: [40] Sy, P. W., Zhang, W. Y., Lee, P. Y.: The dual of Cesàro function spaces.Glas. Mat., III Ser. 22(42) (1987), 103-112. Zbl 0647.46033, MR 0940098
.

Files

Files Size Format View
CzechMathJ_67-2017-4_16.pdf 367.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo