Previous |  Up |  Next

Article

Title: Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation (English)
Author: Ma, Zhi-cai
Author: Wu, Jie
Author: Sun, Yong-zheng
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 5
Year: 2017
Pages: 838-852
Summary lang: English
.
Category: math
.
Summary: This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional chaotic systems within a finite time. Moreover, we analyze the influence of control parameter on the synchronous speed. Finally, two typical examples are examined to illustrate the effectiveness and feasibility of the theoretical result. (English)
Keyword: finite-time synchronization
Keyword: different dimensional chaotic systems
Keyword: adaptive control
Keyword: noise perturbation
MSC: 65L99
MSC: 70K99
idZBL: Zbl 06861627
idMR: MR3750106
DOI: 10.14736/kyb-2017-5-0838
.
Date available: 2018-02-26T11:46:20Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/147096
.
Reference: [1] Aghababa, M. P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique..Nonlinear Dynam. 69 (2012), 247-261. MR 2929869, 10.1007/s11071-011-0261-6
Reference: [2] Aghababa, M. P., Aghababa, H. P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs..Nonlinear Dynam. 69 (2012), 1903-1914. Zbl 1263.93111, MR 2945528, 10.1007/s11071-012-0395-1
Reference: [3] Ahmad, I., Saaban, A. B., Ibrahima, A. B., Shahzadb, M., Naveedca, N.: The synchronization of chaotic systems with different dimensionals by a robust generalized active control..Optik 127 (2016), 4859-4871. 10.1016/j.ijleo.2015.12.134
Reference: [4] Ahmada, I., Shafiq, M., Saaban, A. B., Ibrahim, A. B., Shahzad, M.: Robust finite-time global synchronization of chaotic systemswith different orders..Optik 127 (2016), 8172-8185. 10.1016/j.ijleo.2016.05.065
Reference: [5] Bhat, S. P., Bernstein, D. S.: Finite-time stability of continuous autonomous systems..SIAM J. Control Optim. 38 (2000), 751-766. Zbl 0945.34039, MR 1756893, 10.1137/s0363012997321358
Reference: [6] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S.: The synchronization of chaotic systems..Phys. Rep. 366 (2002), 1-101. Zbl 0995.37022, MR 1913567, 10.1016/s0370-1573(02)00137-0
Reference: [7] Bowong, S., Kakmeni, M., Koina, R.: Chaos synchronization and duration time of a class of uncertain chaotic systems..Math. Comput. Simulat. 71 (2006), 212-228. MR 2222398, 10.1016/j.matcom.2006.01.006
Reference: [8] Cai, N., Li, W. Q., Jing, Y. W.: Finite-time generalized synchronization of chaotic systems with different order..Nonlinear Dynam. 64 (2011), 385-393. MR 2803218, 10.1007/s11071-010-9869-1
Reference: [9] Chen, X. Y., Lu, J. F.: Adaptive synchronization of different chaotic systems with fully unknown parameters..Phys. Lett. A 364 (2007), 123-128. 10.1016/j.physleta.2006.11.092
Reference: [10] Chen, D. Y., Zhang, R. F., Ma, X. Y., Liu, S.: Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme..Nonlinear Dynam. 69 (2012), 35-55. MR 2929853, 10.1007/s11071-011-0244-7
Reference: [11] Erban, R., Haskovec, J., Sun, Y.: A Cucker-Smale model with noise and delay..SIAM J. Appl. Math. 76 (2016), 1535-1557. MR 3534479, 10.1137/15m1030467
Reference: [12] Ge, Z. M., Yang, C. H.: The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems..Chaos Solitons and Fractals 35 (2008), 980-990. 10.1016/j.chaos.2006.05.090
Reference: [13] Ge, X. H., Yang, F. W., Han, Q. L.: Distributed networked control systems: A brief overview..Inform. Sciences 380 (2017), 117-131. 10.1016/j.ins.2015.07.047
Reference: [14] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities..Cambridge At The University Press, Cambridge 1934. Zbl 0634.26008, MR 0944909
Reference: [15] Hauschildt, B., Jason, N. B., Balanov, A., Scholl, A.: Noise-induced cooperative dynamics and its control in coupled neuron models..Phys. Rev. E 74 (2006), 051906. MR 2293732, 10.1103/physreve.74.051906
Reference: [16] He, W. L., Chen, G. R., Han, Q. L., Qian, F.: Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control..Inform. Sciences 380 (2017), 145-158. 10.1016/j.ins.2015.06.005
Reference: [17] He, W. L., Qian, F., Lam, J., Chen, G. R., Han, Q. L., Kurths, J.: Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design..Automatica 62 (2015), 249-262. MR 3423996, 10.1016/j.automatica.2015.09.028
Reference: [18] He, W. L., Zhang, B., Han, Q. L., Qian, F., Kurths, J., Cao, J. D.: Leader-following consensus of nonlinear multiagent systems with stochastic sampling..IEEE Trans. Cybern. 47 (2017), 327-338.
Reference: [19] Huang, D. B.: Simple adaptive-feedback controller for identical chaos synchronization..Phys. Rev. E. 71 (2005), 037203. 10.1103/physreve.71.037203
Reference: [20] Ke, D., Han, Q. L.: Synchronization of two coupled Hindmarsh-Rose neurons..Kybernetika 51 (2015), 784-799. MR 3445984, 10.14736/kyb-2015-5-0784
Reference: [21] Ke, D., Han, Q. L.: Master-Slave synchronization criteria for chaotic Hindmarsh-Rose neurons using linear feedback control..Complexity 21 (2016), 319-327. MR 3508425, 10.1002/cplx.21658
Reference: [22] Korniss, G.: Synchronization in weighted unccorrelated complex networks in a noisy environment: optimization and connections with transport efficiency..Phys. Rev. E 75 (2007), 051121. 10.1103/physreve.75.051121
Reference: [23] Li, S. H., Tian, Y. P.: Finite-time synchronization of chaotic systems..Chaos Solitons and Fractals 15 (2003), 303-310. MR 1926750, 10.1016/s0960-0779(02)00100-5
Reference: [24] Lin, W., Chen, G. R.: Using white noise to enhance synchronization of coupled chaotic systems..Chaos 16 (2006), 013134. Zbl 1144.37375, MR 2220550, 10.1063/1.2183734
Reference: [25] Lin, J. S., Yan, J. J.: Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller..Nonlinear Anal. RWA 10 (2009), 1151-1159. Zbl 1167.37329, MR 2474288, 10.1016/j.nonrwa.2007.12.005
Reference: [26] Ouannas, A., Odibat, Z.: Generalized synchronization of different dimensional chaotic dynamical systems in discrete time..Nonlinear Dynam. 81 (2015), 765-771. MR 3355066, 10.1007/s11071-015-2026-0
Reference: [27] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems..Phys. Rev. Lett. 64 (1990), 821-824. Zbl 1098.37553, MR 1038263, 10.1103/physrevlett.64.821
Reference: [28] Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences..Cambridge University Press, Cambridge 2001. MR 1869044, 10.1017/cbo9780511755743
Reference: [29] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller..Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 2853-2868. Zbl 1221.93131, MR 2772300, 10.1016/j.cnsns.2010.09.038
Reference: [30] Stefanovska, A., Haken, H., McClintock, E., Hožič, M., Bajrović, F., Ribarič, S.: Reversible transitions between synchronization states of the cardiorespiratory system..Phys. Rev. Lett. 85 (2000), 4831-4834. 10.1103/physrevlett.85.4831
Reference: [31] Sun, Y. Z., Li, W., Zhao, D. H.: Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies..Chaos 22 (2012), 023152. MR 3388569, 10.1063/1.4731265
Reference: [32] Sun, Y. Z., Ruan, J.: Synchronization in coupled time-delayed systems with parameter mismath and noise perturbation..Chaos 19 (2009), 043113. 10.1063/1.3262488
Reference: [33] Sun, Y. Z., Shi, H. J., Bakare, E. A., Meng, Q. X.: Noise-induced outer synchronization between two different complex dynamical networks..Nonlinear Dynam. 76 (2014), 519-528. Zbl 1319.37028, MR 3189189, 10.1007/s11071-013-1145-8
Reference: [34] Vincent, U. E., Guo, R.: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller..Phys. Lett. A 375 (2011), 2322-2326. Zbl 1242.34078, 10.1016/j.physleta.2011.04.041
Reference: [35] Wang, H., Han, Z. Z., Zhang, W.: Finite-time chaos control of unified chaotic systems with uncertain parameters..Nonlinear Dynam. 55 (2009), 323-328. MR 2472222, 10.1007/s11071-008-9364-0
Reference: [36] Wu, J., Ma, Z. C., Sun, Y. Z., Liu, F.: Finite-time synchronization of chaotic systems with noise perturbation..Kybernetika 54 (2015), 137-149. MR 3333837, 10.14736/kyb-2015-1-0137
Reference: [37] Yan, J. J., Hung, M. L., Chang, T. Y., Yang, Y. S.: Robust synchronization of chaotic systems via adaptive sliding mode control..Phys. Lett. A 356 (2006), 220-225. 10.1016/j.physleta.2006.03.047
Reference: [38] Yang, Y. Q., Wu, X. F.: Global finite-time synchronization of a class of the non-autonomous chaotic systems..Nonlinear Dynam. 70 (2012), 197-208. Zbl 1267.93150, MR 2991264, 10.1007/s11071-012-0442-y
Reference: [39] Yin, J. L., Khoo, S., Man, Z. H., Yu, X. H.: Finite-time stability and instability of stochastic nonlinear systems..Automatica 47 (2011), 2671-2677. Zbl 1235.93254, MR 2886936, 10.1016/j.automatica.2011.08.050
Reference: [40] Zhang, X. M., Han, Q. L., Yu, X. H.: Survey on recent advances in networked control systems..IEEE Trans. Ind. Informat. 12 (2016), 1740-1752. 10.1109/tii.2015.2506545
Reference: [41] Zhang, G., Liu, Z. R., Ma, Z. J.: Generalized synchronization of different dimensional chaotic dynamical systems..Chaos Solitons and Fractals 32 (2007), 773-779. MR 2280118, 10.1016/j.chaos.2005.11.099
Reference: [42] Zhou, X. B., Jiang, M. R., Huang, Y. Q.: Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification..Kybernetika 50 (2014), 632-642. Zbl 1311.34120, MR 3275089, 10.14736/kyb-2014-4-0632
.

Files

Files Size Format View
Kybernetika_53-2017-5_6.pdf 526.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo